A304449 Numbers that are either squarefree or a perfect power.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
Select[Range[150],SquareFreeQ[#]||GCD@@FactorInteger[#][[All,2]]>1&]
-
PARI
isok(n) = issquarefree(n) || ispower(n); \\ Michel Marcus, May 13 2018
-
Python
from math import isqrt from sympy import mobius, integer_nthroot def A304449(n): def f(x): return int(n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Aug 19 2024
Comments