A304485 Regular triangle where T(n,k) is the number of inequivalent colorings of free pure symmetric multifunctions (with empty expressions allowed) with n positions and k leaves.
1, 1, 0, 1, 2, 0, 1, 6, 4, 0, 1, 12, 23, 7, 0, 1, 20, 81, 73, 12, 0, 1, 30, 209, 407, 206, 19, 0, 1, 42, 451, 1566, 1751, 534, 30, 0, 1, 56, 858, 4711, 9593, 6695, 1299, 45, 0, 1, 72, 1494, 11951, 39255, 51111, 23530, 3004, 67, 0, 1, 90, 2430, 26752, 130220, 278570, 245319, 77205, 6664, 97, 0
Offset: 1
Examples
Inequivalent representatives of the T(5,3) = 23 Mathematica expressions: 1[][1,1] 1[1,1][] 1[1][1] 1[1[1]] 1[1,1[]] 1[][1,2] 1[1,2][] 1[1][2] 1[1[2]] 1[1,2[]] 1[][2,2] 1[2,2][] 1[2][1] 1[2[1]] 1[2,1[]] 1[][2,3] 1[2,3][] 1[2][2] 1[2[2]] 1[2,2[]] 1[2][3] 1[2[3]] 1[2,3[]] Triangle begins: 1 1 0 1 2 0 1 6 4 0 1 12 23 7 0 1 20 81 73 12 0 1 30 209 407 206 19 0 1 42 451 1566 1751 534 30 0
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..325 (rows 1..25)
Programs
-
PARI
\\ See links in A339645 for combinatorial species functions. cycleIndexSeries(n)={my(p=O(x)); for(n=1, n, p = x*sv(1) + x*p*sExp(p)); p} T(n)={my(v=Vec(InequivalentColoringsSeq(sFuncSubst(cycleIndexSeries(n), i->sv(i)*y^i)))); vector(n, n, Vecrev(v[n]/y, n))} { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 01 2021
Extensions
Terms a(37) and beyond from Andrew Howroyd, Jan 01 2021
Comments