A304521 a(n) is the number of prime powers k such that ceiling(log_2(k)) = n.
1, 2, 3, 4, 8, 9, 17, 26, 47, 81, 142, 264, 474, 883, 1629, 3045, 5735, 10780, 20429, 38688, 73654, 140426, 268341, 513867, 986034, 1894410, 3646135, 7027826, 13562626, 26208249, 50698866, 98184468, 190338062, 369326691, 717271794, 1394198587, 2712112562
Offset: 1
Keywords
Examples
a(1)=1 because the interval [2,2] contains 1 prime power: 2. a(2)=2 because the interval [3,4] contains 2 prime powers: 3 and 4=2^2. a(3)=3 because the prime powers in [5,8] are 5, 7, and 8=2^3.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..92
Programs
-
PARI
a(n) = sum(k=2^(n-1)+1, 2^n, isprimepower(k) != 0); \\ Michel Marcus, May 17 2018
-
Python
from sympy import primepi, integer_nthroot def A304521(n): def f(x): m = 1<
Chai Wah Wu, Jan 19 2025
Comments