cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304529 a(1) = 0, a(2n) = n, a(2n+1) = a(A305422(2n+1)).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 1, 4, 3, 5, 1, 6, 1, 7, 4, 8, 8, 9, 1, 10, 2, 11, 11, 12, 1, 13, 6, 14, 7, 15, 1, 16, 25, 17, 7, 18, 1, 19, 14, 20, 1, 21, 19, 22, 12, 23, 1, 24, 3, 25, 16, 26, 13, 27, 1, 28, 22, 29, 1, 30, 1, 31, 5, 32, 10, 33, 1, 34, 2, 35, 59, 36, 1, 37, 44, 38, 55, 39, 13, 40, 2, 41, 9, 42, 32, 43, 1, 44, 47, 45, 1, 46, 19, 47, 26, 48, 1, 49, 50, 50
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2018

Keywords

Comments

This is GF(2)[X] analog of A246277.
For all i, j: a(i) = a(j) => A278233(i) = A278233(j).
For all i, j: a(i) = a(j) => A305788(i) = A305788(j).

Crossrefs

Cf. A014580 (positions of 1's), A278233, A305788.
Cf. also A246277.

Programs

  • PARI
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A304529(n) = if(1==n,0,while(n%2, n = A305422(n)); n/2);

Formula

a(1) = 0, a(2n) = n, a(2n+1) = a(A305422(2n+1)).