cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304627 a(n) = [x^n] Product_{k>=1} (1 + x^k)*(1 - x^(n*k))/((1 - x^k)*(1 + x^(n*k))).

Original entry on oeis.org

1, 0, 2, 6, 12, 22, 38, 62, 98, 152, 230, 342, 502, 726, 1038, 1470, 2060, 2862, 3946, 5398, 7334, 9902, 13286, 17726, 23526, 31064, 40822, 53406, 69566, 90246, 116622, 150142, 192610, 246254, 313806, 398638, 504884, 637590, 802934, 1008446, 1263270, 1578526, 1967694, 2447062
Offset: 0

Views

Author

Ilya Gutkovskiy, May 15 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + x^k) (1 - x^(n k))/((1 - x^k) (1 + x^(n k))) , {k, 1, n}], {x, 0, n}], {n, 0, 43}]
    Table[SeriesCoefficient[Product[(1 + x^k)/(1 - x^k), {k, 1, n - 1}], {x, 0, n}], {n, 0, 43}]
    Join[{1}, Table[SeriesCoefficient[EllipticTheta[4, 0, x^n]/EllipticTheta[4, 0, x], {x, 0, n}], {n, 43}]]
    nmax = 43; CoefficientList[Series[1/EllipticTheta[4, 0, x] - 2 x/(1 - x), {x, 0, nmax}], x]

Formula

G.f.: 1/theta_4(x) - 2*x/(1 - x), where theta_4() is the Jacobi theta function.
a(n) ~ exp(Pi*sqrt(n)) / (8*n). - Vaclav Kotesovec, May 19 2018