A304648 Number of different periodic multisets that fit within some normal multiset of weight n.
0, 1, 3, 7, 13, 25, 44, 78, 136, 242, 422, 747, 1314, 2326, 4121, 7338, 13052, 23288, 41568, 74329, 133011, 238338, 427278, 766652, 1376258, 2472012, 4441916, 7984990, 14358424, 25826779, 46465956, 83616962, 150497816, 270917035, 487753034, 878244512
Offset: 1
Keywords
Examples
The a(5) = 13 periodic multisets: (11), (22), (33), (44), (111), (222), (333), (1111), (1122), (1133), (2222), (2233), (11111).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Mathematica
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; Table[Length[Select[Union@@Rest/@Subsets/@allnorm[n],GCD@@Length/@Split[#]>1&]],{n,10}]
-
PARI
seq(n)=Vec(sum(d=2, n, -moebius(d)*x^d/(1 - x - x^d*(2-x)) + O(x*x^n))/(1-x), -n) \\ Andrew Howroyd, Feb 04 2021
Formula
From Andrew Howroyd, Feb 04 2021: (Start)
G.f.: Sum_{d>=2} -mu(d)*x^d/((1 - x - x^d*(2-x))*(1-x)).
(End)
Extensions
a(12)-a(13) from Robert Price, Sep 15 2018
Terms a(14) and beyond from Andrew Howroyd, Feb 04 2021
Comments