A304649 Number of divisors d|n such that neither d nor n/d is a perfect power greater than 1.
1, 2, 2, 1, 2, 4, 2, 0, 1, 4, 2, 4, 2, 4, 4, 0, 2, 4, 2, 4, 4, 4, 2, 4, 1, 4, 0, 4, 2, 8, 2, 0, 4, 4, 4, 5, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 10, 2, 4, 4, 0, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 4, 4, 4, 8, 2, 4, 0, 4, 2, 10, 4, 4, 4, 4
Offset: 1
Keywords
Examples
The a(36) = 5 ways to write 36 as a product of two numbers that are not perfect powers greater than 1 are 2*18, 3*12, 6*6, 12*3, 18*2.
Links
Crossrefs
Programs
-
Mathematica
nn=1000; sradQ[n_]:=GCD@@FactorInteger[n][[All,2]]===1; Table[Length@Select[Divisors[n],sradQ[n/#]&&sradQ[#]&],{n,nn}]
-
PARI
a(n) = sumdiv(n, d, !ispower(d) && !ispower(n/d)); \\ Michel Marcus, May 17 2018