A304677 Total number of tilings of Ferrers-Young diagrams using dominoes and monominoes summed over all partitions of n.
1, 1, 4, 9, 27, 60, 170, 377, 996, 2288, 5715, 13002, 32321, 72864, 175137, 400039, 943454, 2133159, 4993737, 11236889, 25995341, 58480330, 133650880, 299347432, 681346296, 1519116099, 3427954877, 7631479391, 17122129103, 37958987956, 84819325972, 187405201004
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Ferrers Diagram
- Wikipedia, Domino
- Wikipedia, Domino tiling
- Wikipedia, Ferrers diagram
- Wikipedia, Partition (number theory)
- Wikipedia, Polyomino
- Wikipedia, Young tableau, Diagrams
Programs
-
Maple
h:= proc(l, f) option remember; local k; if min(l[])>0 then `if`(nops(f)=0, 1, h(map(x-> x-1, l[1..f[1]]), subsop(1=[][], f))) else for k from nops(l) while l[k]>0 by -1 do od; h(subsop(k=1, l), f)+ `if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+ `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0) fi end: g:= l-> `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))): b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l) +b(n-i, min(n-i, i), [l[], i])): a:= n-> b(n$2, []): seq(a(n), n=0..23);