A304680 Total number of tilings of Ferrers-Young diagrams using dominoes and at most one monomino summed over all partitions of n.
1, 1, 2, 6, 6, 23, 16, 76, 42, 239, 106, 688, 268, 1931, 650, 5266, 1580, 13861, 3750, 35810, 8862, 91065, 20598, 226914, 47776, 559271, 109248, 1360152, 248966, 3270429, 562630, 7785974, 1264780, 18378067, 2823958, 43007532, 6282198, 99892837, 13884820
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Ferrers Diagram
- Wikipedia, Domino
- Wikipedia, Domino tiling
- Wikipedia, Ferrers diagram
- Wikipedia, Partition (number theory)
- Wikipedia, Polyomino
- Wikipedia, Young tableau, Diagrams
- Index entries for sequences related to dominoes
Programs
-
Maple
h:= proc(l, f, t) option remember; local k; if min(l[])>0 then `if`(nops(f)=0, 1, h(map(x-> x-1, l[1..f[1]]), subsop(1=[][], f), t)) else for k from nops(l) while l[k]>0 by -1 do od; `if`(t, h(subsop(k=1, l), f, false), 0)+ `if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f, t), 0)+ `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f, t), 0) fi end: g:= l-> (t-> `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l), is(t, odd))))(add(i, i=l)): b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l) +b(n-i, min(n-i, i), [l[], i])): a:= n-> b(n$2, []): seq(a(n), n=0..23);