cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304709 Number of integer partitions of n whose distinct parts are pairwise coprime.

Original entry on oeis.org

1, 1, 2, 3, 6, 7, 13, 16, 23, 29, 42, 49, 69, 83, 102, 126, 161, 191, 239, 281, 336, 402, 484, 566, 672, 787, 919, 1067, 1251, 1449, 1684, 1934, 2223, 2554, 2920, 3341, 3821, 4344, 4928, 5586, 6334, 7163, 8091, 9100, 10228, 11492, 12902, 14449, 16167, 18058
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Two parts are coprime if they have no common divisor greater than 1. For partitions of length 1 note that (1) is coprime but (x) is not coprime for x > 1.

Examples

			The a(6) = 7 integer partitions of 6 whose distinct parts are pairwise coprime are (51), (411), (321), (3111), (2211), (21111), (111111).
		

Crossrefs

Programs

  • Mathematica
    Table[Select[IntegerPartitions[n],CoprimeQ@@Union[#]&]//Length,{n,20}]
  • PARI
    lista(nn)={local(Cache=Map());
      my(excl=vector(nn, n, sum(i=1, n-1, if(gcd(i,n)>1, 2^(n-i)))));
      my(c(n, m, b)=
         if(n==0, 1,
            while(m>n || bittest(b,0), m--; b>>=1);
            my(hk=[n, m, b], z);
            if(!mapisdefined(Cache, hk, &z),
              z = if(m, self()(n, m-1, b>>1) + self()(n-m, m, bitor(b, excl[m])), 0);
              mapput(Cache, hk, z)); z));
      my(a(n)=c(n, n, 0) + 1 - numdiv(n));
      for(n=1, nn, print1(a(n), ", "))
    } \\ Andrew Howroyd, Nov 02 2019

Formula

a(n) = A304712(n) + 1 - A000005(n). - Andrew Howroyd, Nov 02 2019