A304709 Number of integer partitions of n whose distinct parts are pairwise coprime.
1, 1, 2, 3, 6, 7, 13, 16, 23, 29, 42, 49, 69, 83, 102, 126, 161, 191, 239, 281, 336, 402, 484, 566, 672, 787, 919, 1067, 1251, 1449, 1684, 1934, 2223, 2554, 2920, 3341, 3821, 4344, 4928, 5586, 6334, 7163, 8091, 9100, 10228, 11492, 12902, 14449, 16167, 18058
Offset: 1
Keywords
Examples
The a(6) = 7 integer partitions of 6 whose distinct parts are pairwise coprime are (51), (411), (321), (3111), (2211), (21111), (111111).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Mathematica
Table[Select[IntegerPartitions[n],CoprimeQ@@Union[#]&]//Length,{n,20}]
-
PARI
lista(nn)={local(Cache=Map()); my(excl=vector(nn, n, sum(i=1, n-1, if(gcd(i,n)>1, 2^(n-i))))); my(c(n, m, b)= if(n==0, 1, while(m>n || bittest(b,0), m--; b>>=1); my(hk=[n, m, b], z); if(!mapisdefined(Cache, hk, &z), z = if(m, self()(n, m-1, b>>1) + self()(n-m, m, bitor(b, excl[m])), 0); mapput(Cache, hk, z)); z)); my(a(n)=c(n, n, 0) + 1 - numdiv(n)); for(n=1, nn, print1(a(n), ", ")) } \\ Andrew Howroyd, Nov 02 2019
Comments