A304710 Number of partitions of 2n whose Ferrers-Young diagram cannot be tiled with dominoes.
0, 0, 0, 1, 2, 6, 12, 25, 46, 85, 146, 250, 410, 666, 1053, 1648, 2527, 3840, 5747, 8525, 12496, 18172, 26165, 37408, 53038, 74714, 104502, 145315, 200808, 276030, 377339, 513342, 694925, 936590, 1256670, 1679310, 2234994, 2963430, 3914701, 5153434, 6760937
Offset: 0
Keywords
Examples
a(3) = 1: the Ferrers-Young diagram of 321 cannot be tiled with dominoes because the numbers of white and black squares (when colored like a chessboard) are different but each domino covers exactly one white and one black square: ._____. |_|X|_| |X|_| |_| . a(4) = 2: 32111, 521. a(5) = 6: 3211111, 32221, 4321, 52111, 541, 721. a(6) = 12: 321111111, 3222111, 33321, 432111, 5211111, 52221, 54111, 543, 6321, 72111, 741, 921.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Ferrers Diagram
- Wikipedia, Domino
- Wikipedia, Domino tiling
- Wikipedia, Ferrers diagram
- Wikipedia, Mutilated chessboard problem
- Wikipedia, Partition (number theory)
- Wikipedia, Young tableau, Diagrams
- Index entries for sequences related to dominoes
Programs
-
Maple
b:= proc(n, i, p, c) option remember; `if`(n=0, `if`(c=0, 0, 1), `if`(i<1, 0, b(n, i-1, p, c)+b(n-i, min(n-i, i), -p, c+ `if`(i::odd, p, 0)))) end: a:= n-> b(2*n$2, 1, 0): seq(a(n), n=0..50); # second Maple program: a:= n-> (p-> p(2*n)-add(p(j)*p(n-j), j=0..n))(combinat[numbpart]): seq(a(n), n=0..50); # third Maple program: b:= proc(n, k) option remember; `if`(n=0, 1, add( numtheory[sigma](j)*b(n-j, k), j=1..n)*k/n) end: a:= n-> b(2*n, 1)-b(n, 2): seq(a(n), n=0..50);
-
Mathematica
b[n_, i_, p_, c_] := b[n, i, p, c] = If[n == 0, If[c == 0, 0, 1], If[i < 1, 0, b[n, i - 1, p, c] + b[n - i, Min[n - i, i], -p, c + If[OddQ[i], p, 0]]]]; a[n_] := b[2n, 2n, 1, 0]; Table[a[n], {n, 0, 50}] (* second program: *) a[n_] := PartitionsP[2n] - Sum[PartitionsP[j]* PartitionsP[n - j], {j, 0, n}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 13 2023, after Alois P. Heinz *)
Comments