cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304710 Number of partitions of 2n whose Ferrers-Young diagram cannot be tiled with dominoes.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 12, 25, 46, 85, 146, 250, 410, 666, 1053, 1648, 2527, 3840, 5747, 8525, 12496, 18172, 26165, 37408, 53038, 74714, 104502, 145315, 200808, 276030, 377339, 513342, 694925, 936590, 1256670, 1679310, 2234994, 2963430, 3914701, 5153434, 6760937
Offset: 0

Views

Author

Alois P. Heinz, May 17 2018

Keywords

Comments

Also the number of partitions of 2n where the number of odd parts in even positions differs from the number of odd parts in odd positions.

Examples

			a(3) = 1: the Ferrers-Young diagram of 321 cannot be tiled with dominoes because the numbers of white and black squares (when colored like a chessboard) are different but each domino covers exactly one white and one black square:
   ._____.
   |_|X|_|
   |X|_|
   |_|
.
a(4) = 2: 32111, 521.
a(5) = 6: 3211111, 32221, 4321, 52111, 541, 721.
a(6) = 12: 321111111, 3222111, 33321, 432111, 5211111, 52221, 54111, 543, 6321, 72111, 741, 921.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p, c) option remember; `if`(n=0, `if`(c=0, 0, 1),
          `if`(i<1, 0, b(n, i-1, p, c)+b(n-i, min(n-i, i), -p, c+
          `if`(i::odd, p, 0))))
        end:
    a:= n-> b(2*n$2, 1, 0):
    seq(a(n), n=0..50);
    # second Maple program:
    a:= n-> (p-> p(2*n)-add(p(j)*p(n-j), j=0..n))(combinat[numbpart]):
    seq(a(n), n=0..50);
    # third Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          numtheory[sigma](j)*b(n-j, k), j=1..n)*k/n)
        end:
    a:= n-> b(2*n, 1)-b(n, 2):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_, p_, c_] := b[n, i, p, c] = If[n == 0, If[c == 0, 0, 1], If[i < 1, 0, b[n, i - 1, p, c] + b[n - i, Min[n - i, i], -p, c + If[OddQ[i], p, 0]]]];
    a[n_] := b[2n, 2n, 1, 0];
    Table[a[n], {n, 0, 50}]
    (* second program: *)
    a[n_] := PartitionsP[2n] - Sum[PartitionsP[j]* PartitionsP[n - j], {j, 0, n}];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 13 2023, after Alois P. Heinz *)

Formula

a(n) = A058696(n) - A000712(n) = A000041(2*n) - A000712(n).
a(n) = A144064(2*n,1) - A144064(n,2).
a(n) ~ exp(2*Pi*sqrt(n/3)) / (8*sqrt(3)*n) * (1 - 2/(3^(1/4)*n^(1/4)) - (sqrt(3)/(2*Pi) + Pi/(48*sqrt(3))) / sqrt(n) + (Pi/(6*3^(3/4)) + 15*3^(1/4)/(8*Pi)) / n^(3/4)). - Vaclav Kotesovec, May 25 2018