A304719 Number of domino tilings of Ferrers-Young diagrams of partitions of 2n using exactly floor(n/2) horizontally oriented dominoes.
1, 1, 2, 5, 14, 28, 62, 150, 380, 787, 1760, 3951, 9338, 19536, 43224, 94326, 213278, 448193, 979712, 2094981, 4622262, 9670378, 20886560, 44067191, 95469402, 198712506
Offset: 0
Keywords
Examples
a(3) = 5: : .___. ._.___. .___. ._._. ._._.___. : |___| | |___| |___| | | | | | |___| : | | |_| | | | |_|_| |_|_| : |_| | | |_|_| |___| : | | |_| : |_|
Links
- Eric Weisstein's World of Mathematics, Ferrers Diagram
- Wikipedia, Domino
- Wikipedia, Domino tiling
- Wikipedia, Ferrers diagram
- Wikipedia, Mutilated chessboard problem
- Wikipedia, Partition (number theory)
- Wikipedia, Polyomino
- Wikipedia, Young tableau, Diagrams
- Index entries for sequences related to dominoes
Crossrefs
Cf. A304718.
Programs
-
Maple
h:= proc(l, f) option remember; local k; if min(l[])>0 then `if`(nops(f)=0, 1, h(map(u-> u-1, l[1..f[1]]), subsop(1=[][], f))) else for k from nops(l) while l[k]>0 by -1 do od; expand( `if`(nops(f)>0 and f[1]>=k, x*h(subsop(k=2, l), f), 0)+ `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)) fi end: g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0, `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0): b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l) +b(n-i, min(n-i, i), [l[], i])): a:= n-> coeff(b(2*n$2, []), x, iquo(n, 2)): seq(a(n), n=0..14);
-
Mathematica
h[l_, f_] := h[l, f] = Module[{k}, If[Min[l] > 0, If[Length[f] == 0, 1, h[l[[1 ;; f[[1]]]] - 1, ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]]>0, k--]; If[Length[f] > 0 && f[[1]] >= k, x*h[ReplacePart[l, k -> 2], f], 0] + If[k > 1 && l[[k - 1]] == 0, h[ReplacePart[l, {k -> 1, k - 1 -> 1}], f], 0]]]; g[l_] := If[Sum[If[OddQ[l[[i]]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, {l[[1]]}], ReplacePart[l, 1 -> Nothing]]], 0]; b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]], b[n, i-1, l] + b[n-i, Min[n-i, i], Append[l, i]]]; T[n_] := CoefficientList[b[2 n, 2 n, {}], x]; a[n_] := T[n][[Floor[n/2] + 1]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Dec 28 2022, after Alois P. Heinz in A304718 *)
Formula
a(n) = A304718(n,floor(n/2)).