cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304719 Number of domino tilings of Ferrers-Young diagrams of partitions of 2n using exactly floor(n/2) horizontally oriented dominoes.

Original entry on oeis.org

1, 1, 2, 5, 14, 28, 62, 150, 380, 787, 1760, 3951, 9338, 19536, 43224, 94326, 213278, 448193, 979712, 2094981, 4622262, 9670378, 20886560, 44067191, 95469402, 198712506
Offset: 0

Views

Author

Alois P. Heinz, May 17 2018

Keywords

Examples

			a(3) = 5:
:  .___.  ._.___.  .___.  ._._.  ._._.___.
:  |___|  | |___|  |___|  | | |  | | |___|
:  | |    |_|      | | |  |_|_|  |_|_|
:  |_|    | |      |_|_|  |___|
:  | |    |_|
:  |_|
		

Crossrefs

Cf. A304718.

Programs

  • Maple
    h:= proc(l, f) option remember; local k; if min(l[])>0 then
         `if`(nops(f)=0, 1, h(map(u-> u-1, l[1..f[1]]), subsop(1=[][], f)))
        else for k from nops(l) while l[k]>0 by -1 do od; expand(
            `if`(nops(f)>0 and f[1]>=k, x*h(subsop(k=2, l), f), 0)+
            `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0))
          fi
        end:
    g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
            `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
    b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l)
                      +b(n-i, min(n-i, i), [l[], i])):
    a:= n-> coeff(b(2*n$2, []), x, iquo(n, 2)):
    seq(a(n), n=0..14);
  • Mathematica
    h[l_, f_] := h[l, f] = Module[{k}, If[Min[l] > 0, If[Length[f] == 0, 1, h[l[[1 ;; f[[1]]]] - 1, ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]]>0, k--]; If[Length[f] > 0 && f[[1]] >= k, x*h[ReplacePart[l, k -> 2], f], 0] + If[k > 1 && l[[k - 1]] == 0, h[ReplacePart[l, {k -> 1, k - 1 -> 1}], f], 0]]];
    g[l_] := If[Sum[If[OddQ[l[[i]]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, {l[[1]]}], ReplacePart[l, 1 -> Nothing]]], 0];
    b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]], b[n, i-1, l] + b[n-i, Min[n-i, i], Append[l, i]]];
    T[n_] := CoefficientList[b[2 n, 2 n, {}], x];
    a[n_] := T[n][[Floor[n/2] + 1]];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Dec 28 2022, after Alois P. Heinz in A304718 *)

Formula

a(n) = A304718(n,floor(n/2)).