A304734 Ordinal transform of the largest prime factor of the n-th term of EKG-sequence.
1, 1, 2, 1, 2, 3, 4, 3, 1, 2, 3, 5, 1, 2, 3, 6, 4, 4, 1, 2, 3, 7, 5, 6, 4, 5, 1, 2, 3, 8, 5, 1, 2, 3, 6, 1, 2, 3, 7, 8, 4, 1, 2, 3, 9, 9, 4, 10, 7, 8, 9, 10, 5, 5, 10, 1, 2, 3, 6, 1, 2, 3, 11, 6, 4, 1, 2, 3, 11, 6, 4, 12, 1, 2, 3, 12, 11, 7, 8, 1, 2, 3, 13, 5, 5, 14, 4, 1, 2, 3, 13, 12, 7, 8, 6, 9, 13, 14, 1, 2, 3, 6, 10, 14, 4
Offset: 1
Links
Programs
-
Mathematica
terms = 105; ekGrapher[s_List] := Block[{m = s[[-1]], k = 3}, While[MemberQ[s, k] || GCD[m, k] == 1, k++]; Append[s, k]]; A304733 = FactorInteger[#][[-1, 1]]& /@ Nest[ekGrapher, {1, 2}, terms]; b[_] = 0; a[n_] := a[n] = With[{t = A304733[[n]]}, b[t] = b[t]+1]; Array[a, terms] (* Jean-François Alcover, Dec 20 2021, after Robert G. Wilson v in A064413 *)
-
PARI
A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1); A304733(n) = A006530(A064413(n)); \\ Needs also code for A064413. ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; v304734 = ordinal_transform(vector(65539,n,A304733(n))); A304734(n) = v304734[n];
Comments