cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A340381 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(A304759(i)) = A278222(A304759(j)), for all i, j >= 1.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 2, 3, 4, 1, 1, 1, 1, 1, 2, 4, 5, 3, 3, 5, 5, 2, 1, 3, 1, 2, 1, 5, 5, 1, 1, 6, 1, 1, 4, 7, 1, 1, 7, 7, 3, 1, 2, 1, 5, 3, 1, 4, 1, 2, 5, 1, 5, 2, 5, 7, 3, 1, 7, 5, 5, 2, 5, 8, 2, 5, 3, 5, 1, 3, 7, 9, 6, 2, 4, 5, 2, 3, 3, 10, 11, 1, 1, 5, 4, 1, 2, 3, 7, 1, 10, 7, 7, 2, 1, 6, 1, 2, 1, 1, 5, 1, 2, 3, 7
Offset: 1

Views

Author

Antti Karttunen, Jan 16 2021

Keywords

Comments

For all i, j: A304758(i) = A304758(j) => a(i) = a(j) => A340378(i) = A340378(j).

Crossrefs

Cf. A340376 (positions of 2's).
Cf. also A305301.

Programs

  • PARI
    up_to = 65537;
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A048673(n) = (A003961(n)+1)/2;
    A289813(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); } \\ From A289813
    A304759(n) = A289813(A048673(n));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v340381 = rgs_transform(vector(up_to,n,A278222(A304759(n))));
    A340381(n) = v340381[n];

A304758 Restricted growth sequence transform of A304759(n), formed from 1-digits in ternary representation of A048673(n).

Original entry on oeis.org

1, 2, 3, 3, 4, 2, 2, 5, 6, 7, 1, 3, 7, 7, 2, 8, 9, 10, 5, 11, 12, 2, 7, 5, 1, 2, 7, 11, 9, 13, 1, 14, 13, 13, 8, 15, 3, 13, 16, 17, 4, 18, 2, 3, 19, 10, 13, 8, 1, 2, 11, 3, 11, 2, 12, 17, 4, 13, 20, 21, 12, 2, 21, 22, 2, 23, 10, 21, 1, 24, 16, 25, 26, 2, 27, 21, 2, 24, 10, 28, 29, 7, 13, 30, 6, 7, 2, 5, 20, 31, 32, 15, 17, 2, 18, 14, 13, 2, 1, 3, 12, 18, 2, 5
Offset: 1

Views

Author

Antti Karttunen, May 30 2018

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A048673(n) = (A003961(n)+1)/2;
    A289813(n) = { my (d=digits(n, 3)); from digits(vector(#d, i, if (d[i]==1, 1, 0)), 2); } \\ From A289813
    A304759(n) = A289813(A048673(n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v304758 = rgs_transform(vector(65537,n,A304759(n)));
    A304758(n) = v304758[n];

A351031 a(n) = Product_{d|n, dA019565(A304759(d)).

Original entry on oeis.org

1, 2, 2, 2, 2, 6, 2, 6, 6, 12, 2, 18, 2, 2, 36, 90, 2, 180, 2, 180, 6, 4, 2, 810, 12, 10, 180, 30, 2, 180, 2, 9450, 12, 20, 12, 56700, 2, 30, 30, 56700, 2, 420, 2, 12, 1080, 10, 2, 1275750, 2, 120, 60, 30, 2, 31500, 24, 9450, 90, 20, 2, 238140, 2, 4, 2520, 10914750, 60, 84, 2, 420, 30, 31500, 2, 2946982500, 2, 6
Offset: 1

Views

Author

Antti Karttunen, Jan 29 2022

Keywords

Crossrefs

Cf. A019565, A048673, A289813, A304759, A351030, A351032, A351033 (rgs-transform).
Cf. also A293221.

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A048673(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1+factorback(f))/2; };
    A289813(n) = { my(d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); } \\ From A289813
    A304759(n) = A289813(A048673(n));
    A351031(n) = { my(m=1); fordiv(n,d,if(dA019565(A304759(d)))); (m); };

A340383 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A278222(A304759(n)), A278222(A291759(n))], for all i, j >= 1.

Original entry on oeis.org

1, 2, 1, 3, 4, 5, 2, 6, 7, 3, 3, 8, 1, 9, 2, 10, 11, 6, 4, 12, 11, 13, 3, 14, 9, 15, 3, 16, 12, 17, 3, 18, 3, 3, 7, 19, 3, 9, 19, 19, 6, 3, 5, 8, 12, 20, 1, 21, 8, 22, 12, 23, 11, 24, 12, 25, 6, 8, 26, 27, 12, 13, 12, 28, 13, 29, 4, 12, 9, 20, 26, 30, 31, 22, 10, 16, 5, 14, 6, 32, 33, 8, 3, 12, 10, 23, 15, 14, 19, 8
Offset: 1

Views

Author

Antti Karttunen, Jan 16 2021

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A340381(n), A340382(n)], or equally, of the function f(n) = A290093(A048673(n)).
For all i, j: a(i) = a(j) => A286586(i) = A286586(j) => A286585(i) = A286585(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A048673(n) = (A003961(n)+1)/2;
    A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From A289814
    A291759(n) = A289814(A048673(n));
    A289813(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); } \\ From A289813
    A304759(n) = A289813(A048673(n));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    Aux340383(n) = [A278222(A291759(n)),A278222(A304759(n))];
    v340383 = rgs_transform(vector(up_to,n,Aux340383(n)));
    A340383(n) = v340383[n];

A340684 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A291759(n), A278222(A304759(n))], for all i, j >= 1.

Original entry on oeis.org

1, 2, 1, 3, 4, 5, 6, 7, 8, 3, 9, 10, 1, 11, 12, 13, 14, 7, 4, 15, 14, 16, 9, 17, 18, 19, 20, 21, 22, 23, 24, 25, 9, 3, 8, 26, 24, 11, 27, 26, 28, 3, 29, 30, 22, 31, 1, 32, 33, 34, 35, 36, 14, 37, 35, 38, 39, 10, 40, 41, 22, 42, 43, 44, 45, 46, 4, 15, 47, 31, 40, 48, 49, 50, 51, 21, 52, 53, 54, 55, 56, 30, 24, 15
Offset: 1

Views

Author

Antti Karttunen, Jan 16 2021

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A291759(n), A278222(A304759(n))].
For all i, j: a(i) = a(j) => A340383(i) = A340383(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A048673(n) = (A003961(n)+1)/2;
    A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From A289814
    A291759(n) = A289814(A048673(n));
    A289813(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); } \\ From A289813
    A304759(n) = A289813(A048673(n));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    Aux340684(n) = [A291759(n),A278222(A304759(n))];
    v340684 = rgs_transform(vector(up_to,n,Aux340684(n)));
    A340684(n) = v340684[n];

A340376 Numbers k such that there are no 1-digits in the ternary expansion of A048673(k).

Original entry on oeis.org

2, 6, 7, 15, 22, 26, 43, 50, 54, 62, 65, 74, 77, 87, 94, 98, 103, 138, 183, 190, 198, 214, 218, 221, 235, 278, 302, 343, 353, 406, 421, 426, 430, 439, 463, 465, 467, 475, 498, 506, 534, 574, 578, 610, 633, 646, 662, 666, 682, 734, 799, 843, 862, 869, 870, 882, 886, 910, 949, 967, 977, 987, 1013, 1014, 1087, 1121
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2021

Keywords

Crossrefs

Positions of zeros in A304759 and in A340378. Positions of 2's in A340381.

Programs

A351030 Lexicographically earliest infinite sequence such that a(i) = a(j) => A351031(i) = A351031(j) and A351032(i) = A351032(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 23, 25, 2, 26, 27, 28, 2, 29, 2, 30, 31, 32, 2, 33, 34, 35, 36, 37, 2, 38, 39, 40, 41, 42, 2, 43, 2, 44, 45, 46, 36, 47, 2, 48, 49, 50, 2, 51, 2, 52, 53, 54, 55, 56, 2, 57, 58, 59, 2, 60, 61, 62
Offset: 1

Views

Author

Antti Karttunen, Jan 29 2022

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A351031(n), A351032(n)], or equally, of the ordered pair [A351033(n), A351034(n)].
For all i, j: a(i) = a(j) => A349910(i) = A349910(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A048673(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1+factorback(f))/2; };
    A289813(n) = { my(d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); };
    A289814(n) = { my(d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); };
    A291759(n) = A289814(A048673(n));
    A304759(n) = A289813(A048673(n));
    A351031(n) = { my(m=1); fordiv(n,d,if(dA019565(A304759(d)))); (m); };
    A351032(n) = { my(m=1); fordiv(n,d,if(dA019565(A291759(d)))); (m); };
    Aux351030(n) = [A351031(n),A351032(n)];
    v351030 = rgs_transform(vector(up_to, n, Aux351030(n)));
    A351030(n) = v351030[n];

A305295 Binary encoding of 1-digits in ternary representation of A245612(n).

Original entry on oeis.org

1, 0, 2, 2, 6, 7, 0, 3, 14, 4, 12, 1, 2, 0, 4, 0, 30, 37, 0, 5, 26, 28, 0, 1, 6, 17, 8, 14, 10, 9, 4, 1, 62, 16, 72, 103, 2, 90, 8, 0, 54, 25, 60, 33, 2, 32, 0, 19, 14, 40, 32, 40, 18, 11, 24, 0, 22, 18, 16, 9, 10, 8, 0, 4, 126, 333, 36, 305, 146, 4, 204, 331, 6, 147, 176, 44, 18, 225, 8, 121, 110, 214, 48, 203, 122, 6, 64, 78, 6, 1
Offset: 0

Views

Author

Antti Karttunen, May 31 2018

Keywords

Crossrefs

Cf. A245612, A289813, A305296 (rgs-transform).
Cf. also A292260, A291763.
Cf. also A304759, A304760.

Programs

A340378 Number of 1-digits in the ternary representation of A048673(n).

Original entry on oeis.org

1, 0, 1, 1, 2, 0, 0, 2, 3, 1, 1, 1, 1, 1, 0, 3, 2, 2, 2, 2, 2, 0, 1, 2, 1, 0, 1, 2, 2, 1, 1, 4, 1, 1, 3, 3, 1, 1, 3, 3, 2, 1, 0, 1, 2, 2, 1, 3, 1, 0, 2, 1, 2, 0, 2, 3, 2, 1, 3, 2, 2, 0, 2, 5, 0, 2, 2, 2, 1, 2, 3, 4, 4, 0, 3, 2, 0, 2, 2, 4, 3, 1, 1, 2, 3, 1, 0, 2, 3, 1, 4, 3, 3, 0, 1, 4, 1, 0, 1, 1, 2, 1, 0, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2021

Keywords

Comments

Binary weight of A304759(n).

Crossrefs

Cf. A340376 (positions of zeros).

Programs

Formula

a(n) = A062756(A048673(n)) = A000120(A304759(n)).
a(n) = A286585(n) - 2*A340379(n).

A341345 a(n) = A048673(n) mod 3.

Original entry on oeis.org

1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 1, 2, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 1, 2, 0, 2, 0, 2, 0, 2, 1, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 2, 0, 2, 0, 2, 1, 2, 1, 2, 1, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 1, 2, 0, 2, 0, 2, 0, 2, 1, 2, 1, 2, 0, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 09 2021

Keywords

Crossrefs

Cf. A007395 (even bisection), A341346 (odd bisection), A341347.
Cf. also A292603.

Programs

  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341345(n) = (((A003961(n)+1)/2)%3);

Formula

a(n) = A010872(A048673(n)).
a(n) = 0 iff A292247(n) is odd.
a(n) = 0 iff A292250(n) is odd, or equally, iff both A291759(n) and A304759(n) are even.
a(n) = 0 iff A292251(n) > 0.
a(n) = 1 iff A292248(n) is odd.
a(n) = 1 iff A304759(n) is odd, or equally, iff both A291759(n) and A292250(n) are even.
a(2n) = 2.
Showing 1-10 of 11 results. Next