A304777 Number of partitions p of n such that the sequence of level steps (when interpreted as ascents) and descents of p forms a Dyck path.
1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 3, 4, 3, 6, 5, 7, 5, 9, 10, 12, 10, 15, 13, 18, 19, 27, 20, 30, 30, 40, 40, 52, 48, 61, 61, 77, 79, 100, 99, 124, 129, 150, 150, 200, 199, 240, 249, 294, 303, 363, 369, 441, 484, 550, 569, 686, 716, 817, 885, 1003, 1065
Offset: 0
Keywords
Examples
a(5) = 2: 221, 5. a(11) = 4: 33221, 443, 551, (11). a(12) = 3: 33321, 552, (12). a(15) = 6: 44331, 44421, 55221, 663, 771, (15).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n, i, c) option remember; `if`(n=0, `if`(c=0, 1, 0), `if`(min(i, c)<1, 0, add(b(n-i*j, i-1, `if`(j=0, c, c+j-2)), j=0..n/i))) end: a:= n-> `if`(n=0, 1, b(n$2, 1)): seq(a(n), n=0..100);
-
Mathematica
b[n_, i_, c_] := b[n, i, c] = If[n == 0, If[c == 0, 1, 0], If[Min[i, c] < 1, 0, Sum[b[n - i*j, i - 1, If[j == 0, c, c + j - 2]], {j, 0, n/i}]]]; a[n_] := If[n == 0, 1, b[n, n, 1]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 28 2018, from Maple *)