A304778 Number of Carlitz compositions c of n such that the sequence of ascents and descents of c forms a Dyck path.
1, 1, 1, 1, 2, 2, 4, 6, 9, 15, 23, 38, 62, 100, 163, 267, 441, 725, 1198, 1986, 3291, 5472, 9116, 15204, 25399, 42494, 71183, 119396, 200507, 337090, 567318, 955749, 1611672, 2720212, 4595198, 7768975, 13145109, 22258264, 37716358, 63953853, 108515011
Offset: 0
Keywords
Examples
a(6) = 4: 132, 141, 231, 6. a(7) = 6: 12121, 142, 151, 232, 241, 7. a(8) = 9: 12131, 13121, 143, 152, 161, 242, 251, 341, 8. a(9) = 15: 12132, 12141, 12321, 13131, 14121, 153, 162, 171, 23121, 243, 252, 261, 342, 351, 9.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n, l, c) option remember; `if`(c<0 and l>0, 0, `if`(n=0, `if`(l<0 or c=0, 1, 0), add(`if`(i=l, 0, b(n-i, i, c+`if`(i>l, 1, -1))), i=1..n))) end: a:= n-> b(n, -1$2): seq(a(n), n=0..50);
-
Mathematica
b[n_, l_, c_] := b[n, l, c] = If[c<0 && l>0, 0, If[n==0, If[l<0 || c==0, 1, 0], Sum[If[i==l, 0, b[n-i, i, c + If[i>l, 1, -1]]], {i, 1, n}]]]; a[n_] := b[n, -1, -1]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, May 31 2018, from Maple *)
Formula
a(n) ~ c * d^n / n^(3/2), where d = A241902 = 1.7502412917183090312497386246... and c = 7.0142545527132612683043468956... - Vaclav Kotesovec, May 22 2018