A304779 The "rootless" zeta function. Dirichlet inverse of the function defined by r(n) = (-1)^Omega(n) if n is 1 or not a perfect power and r(n) = 0 otherwise.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 7, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 2, 2, 5, 1, 1, 1, 2, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
a[n_]:=a[n]=If[n==1,1,-Sum[(-1)^PrimeOmega[d]*a[n/d],{d,Select[Rest[Divisors[n]],GCD@@FactorInteger[#][[All,2]]==1&]}]]; Array[a,100]
-
PARI
A304779(n) = if(1==n,1,-sumdiv(n,d,if((d>1)&&!ispower(d),((-1)^bigomega(d))*A304779(n/d),0))); \\ Antti Karttunen, Jul 22 2018
Formula
a(1) = 1 and a(n > 1) = -Sum_{d|n, d not a perfect power} (-1)^Omega(d) * a(n/d).
Extensions
More terms from Antti Karttunen, Jul 22 2018
Comments