cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304779 The "rootless" zeta function. Dirichlet inverse of the function defined by r(n) = (-1)^Omega(n) if n is 1 or not a perfect power and r(n) = 0 otherwise.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 7, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 2, 2, 5, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, May 18 2018

Keywords

Comments

Omega(n) = A001222(n) is the number of prime factors of n counted with multiplicity.
First occurrence of k: 1, 12, 48, 60, 36, 3072, 72, 420, 240, 786432, 3145728, 144, 216, ..., . - Robert G. Wilson v, Jul 22 2018
Records: 1, 2, 5, 7, 12, 13, 15, 18, 26, 37, 38, 57, 60, 67, 81, 96, 142, 165, 199, 221, 234, ..., . - Robert G. Wilson v, Jul 22 2018

Crossrefs

Positions of entries greater than 1 appear to be A126706.

Programs

  • Mathematica
    a[n_]:=a[n]=If[n==1,1,-Sum[(-1)^PrimeOmega[d]*a[n/d],{d,Select[Rest[Divisors[n]],GCD@@FactorInteger[#][[All,2]]==1&]}]];
    Array[a,100]
  • PARI
    A304779(n) = if(1==n,1,-sumdiv(n,d,if((d>1)&&!ispower(d),((-1)^bigomega(d))*A304779(n/d),0))); \\ Antti Karttunen, Jul 22 2018

Formula

a(1) = 1 and a(n > 1) = -Sum_{d|n, d not a perfect power} (-1)^Omega(d) * a(n/d).

Extensions

More terms from Antti Karttunen, Jul 22 2018