cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304790 The maximal number of different domino tilings allowed by the Ferrers-Young diagram of a single partition of 2n.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 36, 55, 95, 149, 281, 430, 781, 1211, 2245, 3456, 6728, 10092, 18061, 31529, 51378, 85659, 167089, 252748, 431819, 817991, 1292697
Offset: 0

Views

Author

Alois P. Heinz, May 18 2018

Keywords

Examples

			a(11) = 149 different domino tilings are possible for 444442 and 6655.
a(18) = 6728 different domino tilings are possible for 666666.
		

Crossrefs

Programs

  • Maple
    h:= proc(l, f) option remember; local k; if min(l[])>0 then
         `if`(nops(f)=0, 1, h(map(u-> u-1, l[1..f[1]]), subsop(1=[][], f)))
        else for k from nops(l) while l[k]>0 by -1 do od;
            `if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+
            `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)
          fi
        end:
    g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
            `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
    b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), max(b(n, i-1, l),
                       b(n-i, min(n-i, i), [l[], i]))):
    a:= n-> b(2*n$2, []):
    seq(a(n), n=0..15);
  • Mathematica
    h[l_, f_] := h[l, f] = Module[{k}, If[Min[l] > 0, If[Length[f] == 0, 1, h[Map[# - 1&, l[[1 ;; f[[1]]]]], ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]] > 0 , k--]; If[Length[f] > 0 && f[[1]] >= k, h[ReplacePart[l, k -> 2], f], 0] + If[k > 1 && l[[k - 1]] == 0, h[ReplacePart[l, {k -> 1, k - 1 -> 1}], f], 0]]];
    g[l_] := If[Sum[If[OddQ@l[[i]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, {l[[1]]}], ReplacePart[l, 1 -> Nothing]]], 0];
    b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]], Max[b[n, i - 1, l], b[n - i, Min[n - i, i], Append[l, i]]]];
    a[n_] := b[2n, 2n, {}];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Aug 24 2021, after Alois P. Heinz *)

Formula

a(n) = max { k : A304789(n,k) > 0 }.
a(A001105(n)) = A004003(n).
a(n) = A000045(n+1) for n < 8.