A304792 Number of subset-sums of integer partitions of n.
1, 2, 5, 10, 19, 34, 58, 96, 152, 240, 361, 548, 795, 1164, 1647, 2354, 3243, 4534, 6150, 8420, 11240, 15156, 19938, 26514, 34513, 45260, 58298, 75704, 96515, 124064, 157072, 199894, 251097, 317278, 395625, 496184, 615229, 765836, 944045, 1168792, 1432439
Offset: 0
Keywords
Examples
The a(4)=19 subset sums are (0,4), (4,4), (0,31), (1,31), (3,31), (4,31), (0,22), (2,22), (4,22), (0,211), (1,211), (2,211), (3,211), (4,211), (0,1111), (1,1111), (2,1111), (3,1111), (4,1111).
Links
- Robert Price, Table of n, a(n) for n = 0..70
Crossrefs
Programs
-
Maple
b:= proc(n, i, s) option remember; `if`(n=0, nops(s), `if`(i<1, 0, b(n, i-1, s)+b(n-i, min(n-i, i), map(x-> [x, x+i][], s)))) end: a:= n-> b(n$2, {0}): seq(a(n), n=0..40); # Alois P. Heinz, May 18 2018
-
Mathematica
Table[Total[Length[Union[Total/@Subsets[#]]]&/@IntegerPartitions[n]],{n,15}] (* Second program: *) b[n_, i_, s_] := b[n, i, s] = If[n == 0, Length[s], If[i < 1, 0, b[n, i - 1, s] + b[n - i, Min[n - i, i], {#, # + i}& /@ s // Flatten // Union]]]; a[n_] := b[n, n, {0}]; a /@ Range[0, 40] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A304792_T(n,i,s,l): if n==0: return l if i<1: return 0 return A304792_T(n,i-1,s,l)+A304792_T(n-i,min(n-i,i),(t:=tuple(sorted(set(s+tuple(x+i for x in s))))),len(t)) def A304792(n): return A304792_T(n,n,(0,),1) # Chai Wah Wu, Sep 25 2023, after Alois P. Heinz
Comments