A304819 Dirichlet convolution of r with zeta, where r(n) = (-1)^Omega(n) if n is 1 or not a perfect power and r(n) = 0 otherwise.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, -1, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, -2, 0, 0, -1, -1, 0, 0, 0, -1, 0
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
Table[Sum[(-1)^PrimeOmega[d],{d,Select[Divisors[n],GCD@@FactorInteger[#][[All,2]]==1&]}],{n,100}]
-
PARI
A304819(n) = sumdiv(n,d,if(!ispower(d),(-1)^bigomega(d),0)); \\ Antti Karttunen, Jul 29 2018
Formula
a(n) = Sum_{d|n, d = 1 or not a perfect power} (-1)^Omega(d).
Comments