A304867 Number of non-isomorphic hypertrees of weight n.
1, 1, 1, 1, 2, 2, 5, 6, 13, 20, 41, 70, 144, 266, 545, 1072, 2210, 4491, 9388, 19529, 41286, 87361, 186657, 399927, 862584, 1866461, 4058367, 8852686, 19384258, 42570435, 93783472, 207157172, 458805044, 1018564642, 2266475432, 5053991582, 11292781891, 25280844844
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(6) = 5 hypertrees are the following: {{1,2,3,4,5,6}} {{1,2},{1,3,4,5}} {{1,2,3},{1,4,5}} {{1,2},{1,3},{1,4}} {{1,2},{1,3},{2,4}} Non-isomorphic representatives of the a(7) = 6 hypertrees are the following: {{1,2,3,4,5,6,7}} {{1,2},{1,3,4,5,6}} {{1,2,3},{1,4,5,6}} {{1,2},{1,3},{1,4,5}} {{1,2},{1,3},{2,4,5}} {{1,3},{2,4},{1,2,5}} From _Kevin Ryde_, Feb 25 2020: (Start) a(6) = 5 hypertrees of weight 6 and their corresponding free trees of 6 edges (7 vertices). Each * is an "odd" vertex (odd distance to a leaf). Each hyperedge is the set of "even" vertices surrounding an odd. {1,2,3,4,5,6} 3 2 \ / 4-*-1 (star 7) / \ 5 6 . {1,2},{1,3,4,5} /-3 2--*--1--*--4 \-5 . {1,2,3},{1,4,5} 2-\ /-4 *--1--* 3-/ \-5 . {1,2},{1,3},{1,4} /-*--2 1--*--3 \-*--4 . {1,2},{2,4},{1,3} 3--*--1--*--2--*--4 (path 7) (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- Roland Bacher, On the enumeration of labelled hypertrees and of labelled bipartite trees, arXiv:1102.2708 [math.CO], 2011.
Crossrefs
Programs
-
Mathematica
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; EulerT[v_List] := With[{q = etr[v[[#]]&]}, q /@ Range[Length[v]]]; ser[v_] := Sum[v[[i]] x^(i-1), {i, 1, Length[v]}] + O[x]^Length[v]; c[n_] := Module[{v = {1}}, For[i = 1, i <= Ceiling[n/2], i++, v = Join[{1}, EulerT[Join[{0}, EulerT[v]]]]]; v]; seq[n_] := Module[{u = c[n]}, x*ser[EulerT[u]]*(1 - x*ser[u]) + (1 - x)* ser[u] + x + O[x]^n // CoefficientList[#, x]&]; seq[40] (* Jean-François Alcover, Feb 08 2020, after Andrew Howroyd *)
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} c(n)={my(v=[1]); for(i=1, ceil(n/2), v=concat([1], EulerT(concat([0], EulerT(v))))); v} seq(n)={my(u=c(n)); Vec(x*Ser(EulerT(u))*(1-x*Ser(u)) + (1 - x)*Ser(u) + x + O(x*x^n))} \\ Andrew Howroyd, Aug 29 2018
Formula
a(n) = Sum_{k=1..floor(n/2)} A318601(n+1-k, k). - Andrew Howroyd, Aug 29 2018
Extensions
Terms a(10) and beyond from Andrew Howroyd, Aug 29 2018
Comments