cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304868 Numbers x satisfying x == 1 (mod 4) or x == 14, 26, 30 (mod 32).

Original entry on oeis.org

1, 5, 9, 13, 14, 17, 21, 25, 26, 29, 30, 33, 37, 41, 45, 46, 49, 53, 57, 58, 61, 62, 65, 69, 73, 77, 78, 81, 85, 89, 90, 93, 94, 97, 101, 105, 109, 110, 113, 117, 121, 122, 125, 126, 129, 133, 137, 141, 142, 145, 149, 153, 154, 157, 158, 161, 165, 169, 173, 174, 177
Offset: 1

Views

Author

Michel Marcus, May 20 2018

Keywords

Comments

The sum of two distinct terms of this sequence is never a square.
Sequence has density 11/32, the maximal density that can be attained with such a sequence.

References

  • J. P. Massias, Sur les suites dont les sommes des termes 2 à 2 ne sont pas des carrés, Publications du département de mathématiques de Limoges, 1982.

Crossrefs

Cf. A016777 (another such sequence), A210380.

Programs

  • PARI
    isok(n) = ((n%4)==1) || ((n%32)==14) || ((n%32)==26) || ((n%32)==30);
    
  • PARI
    Vec(x*(1 + 4*x + 4*x^2 + 4*x^3 + x^4 + 3*x^5 + 4*x^6 + 4*x^7 + x^8 + 3*x^9 + x^10 + 2*x^11) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10)) + O(x^40)) \\ Colin Barker, May 20 2018

Formula

From Colin Barker, May 20 2018: (Start)
G.f.: x*(1 + 4*x + 4*x^2 + 4*x^3 + x^4 + 3*x^5 + 4*x^6 + 4*x^7 + x^8 + 3*x^9 + x^10 + 2*x^11) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10)).
a(n) = a(n-1) + a(n-11) - a(n-12) for n>12.
(End)