A304868 Numbers x satisfying x == 1 (mod 4) or x == 14, 26, 30 (mod 32).
1, 5, 9, 13, 14, 17, 21, 25, 26, 29, 30, 33, 37, 41, 45, 46, 49, 53, 57, 58, 61, 62, 65, 69, 73, 77, 78, 81, 85, 89, 90, 93, 94, 97, 101, 105, 109, 110, 113, 117, 121, 122, 125, 126, 129, 133, 137, 141, 142, 145, 149, 153, 154, 157, 158, 161, 165, 169, 173, 174, 177
Offset: 1
References
- J. P. Massias, Sur les suites dont les sommes des termes 2 à 2 ne sont pas des carrés, Publications du département de mathématiques de Limoges, 1982.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- J. C. Lagarias, A. M. Odlyzko, J. B. Shearer, On the density of sequences of integers the sum of no two of which is a square. I. Arithmetic progressions, Journal of Combinatorial Theory. Series A, 33 (1982), pp. 167-185.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,1,-1).
Programs
-
PARI
isok(n) = ((n%4)==1) || ((n%32)==14) || ((n%32)==26) || ((n%32)==30);
-
PARI
Vec(x*(1 + 4*x + 4*x^2 + 4*x^3 + x^4 + 3*x^5 + 4*x^6 + 4*x^7 + x^8 + 3*x^9 + x^10 + 2*x^11) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10)) + O(x^40)) \\ Colin Barker, May 20 2018
Formula
From Colin Barker, May 20 2018: (Start)
G.f.: x*(1 + 4*x + 4*x^2 + 4*x^3 + x^4 + 3*x^5 + 4*x^6 + 4*x^7 + x^8 + 3*x^9 + x^10 + 2*x^11) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10)).
a(n) = a(n-1) + a(n-11) - a(n-12) for n>12.
(End)
Comments