cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304886 Irregular triangle where row n contains indices k where the product of A002110(k) = A025487(n).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 2, 4, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Michael De Vlieger, May 21 2018

Keywords

Comments

Row n consists of terms k such that A025487(n) = the product of primorials p_k#, the k in row n written least to greatest k.
For m = A025487(n) in A000079 (i.e., m is an integer power of 2), row n contains A000079(m) 1s.
For m = A025487(n) in A002110 (i.e., m is a primorial) row n contains a single term k that is the index of m in A002110.

Examples

			Triangle begins as in rightmost column, which lists the terms that occur on row n. Maximum value of each row is given by A061394(n).
   n  A025487(n)   Row n
--------------------------------
   1        1      0
   2        2      1
   3        4      1,1
   4        6      2
   5        8      1,1,1
   6       12      1,2
   7       16      1,1,1,1
   8       24      1,1,2
   9       30      3
  10       32      1,1,1,1,1
  11       36      2,2
  12       48      1,1,1,2
  13       60      1,3
  14       64      1,1,1,1,1,1
  15       72      1,2,2
  16       96      1,1,1,1,2
  17      120      1,1,3
  18      128      1,1,1,1,1,1,1
  19      144      1,1,2,2
  20      180      2,3
  ...
		

Crossrefs

Cf. A025487, A051282 (row lengths), A061394 (row maximum), A124832, A181815.
Cf. also A307056.

Programs

  • Mathematica
    (* Simple (A025487(n) < 10^5): *)
    {{0}}~Join~Map[With[{w = #}, Reverse@ Array[Function[k, Count[w, _?(# >= k &)] ], Max@ w]] &, Select[Array[{#, FactorInteger[#][[All, -1]]} &, 400], Times @@ Boole@ {#1 == Times @@ MapIndexed[Prime[First@ #2]^#1 &, #3], #2 == #3} == 1 & @@ {#1, #2, Sort[#2, Greater]} & @@ # &][[All, -1]] ]
    (* Efficient (A025487(n) < 10^23): *)
    f[n_] := Block[{ww, g, h},
      g[x_] := Apply[Times,
        MapIndexed[Prime[First@ #2]^#1 &, x]];
      h[x_] := Reverse@
        Array[Function[k, Count[x, _?(# >= k &)] ], Max@ x];
      ww = NestList[Append[#, 1] &, {1}, # - 1] &[-2 +
         Length@ NestWhileList[NextPrime@ # &, 1,
         Times @@ {##} <= n &, All] ];
      Map[h, SortBy[Flatten[#, 1], g]] &@
       Map[Block[{w = #, k = 1},
          Apply[
             Join, {{ConstantArray[1, Length@ w]},
               If[Length@ # == 0, #, #[[1]]] }] &@ Reap[
             Do[
              If[# < n,
                Sow[w]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@
                   g@ Set[w,
                   If[k == 1,
                     MapAt[# + 1 &, w, k],
                     PadLeft[#, Length@ w, First@ #] &@
                       Drop[MapAt[# + Boole[i > 1] &, w, k],
                        k - 1] ]], {i, Infinity}] ][[-1]] ] &, ww]]; {{0}}~Join~f@ 400

Formula

For row n > 1, Product_{k=1..A051282(n)} A000040(T(n,k)) = A181815(n). [Product of primes indexed by nonzero terms of row n is equal to A181815(n)] - Antti Karttunen, Dec 28 2019