A304886 Irregular triangle where row n contains indices k where the product of A002110(k) = A025487(n).
0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 2, 4, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2
Offset: 1
Examples
Triangle begins as in rightmost column, which lists the terms that occur on row n. Maximum value of each row is given by A061394(n). n A025487(n) Row n -------------------------------- 1 1 0 2 2 1 3 4 1,1 4 6 2 5 8 1,1,1 6 12 1,2 7 16 1,1,1,1 8 24 1,1,2 9 30 3 10 32 1,1,1,1,1 11 36 2,2 12 48 1,1,1,2 13 60 1,3 14 64 1,1,1,1,1,1 15 72 1,2,2 16 96 1,1,1,1,2 17 120 1,1,3 18 128 1,1,1,1,1,1,1 19 144 1,1,2,2 20 180 2,3 ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..8600
- Michael De Vlieger, Concordance of A025487, A051282, A061394, and A304886
- Michael De Vlieger, Indices of primorials whose product is highly composite
- Michael De Vlieger, Indices of primorials whose product is superabundant
Crossrefs
Programs
-
Mathematica
(* Simple (A025487(n) < 10^5): *) {{0}}~Join~Map[With[{w = #}, Reverse@ Array[Function[k, Count[w, _?(# >= k &)] ], Max@ w]] &, Select[Array[{#, FactorInteger[#][[All, -1]]} &, 400], Times @@ Boole@ {#1 == Times @@ MapIndexed[Prime[First@ #2]^#1 &, #3], #2 == #3} == 1 & @@ {#1, #2, Sort[#2, Greater]} & @@ # &][[All, -1]] ] (* Efficient (A025487(n) < 10^23): *) f[n_] := Block[{ww, g, h}, g[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]]; h[x_] := Reverse@ Array[Function[k, Count[x, _?(# >= k &)] ], Max@ x]; ww = NestList[Append[#, 1] &, {1}, # - 1] &[-2 + Length@ NestWhileList[NextPrime@ # &, 1, Times @@ {##} <= n &, All] ]; Map[h, SortBy[Flatten[#, 1], g]] &@ Map[Block[{w = #, k = 1}, Apply[ Join, {{ConstantArray[1, Length@ w]}, If[Length@ # == 0, #, #[[1]]] }] &@ Reap[ Do[ If[# < n, Sow[w]; k = 1, If[k >= Length@ w, Break[], k++]] &@ g@ Set[w, If[k == 1, MapAt[# + 1 &, w, k], PadLeft[#, Length@ w, First@ #] &@ Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]], {i, Infinity}] ][[-1]] ] &, ww]]; {{0}}~Join~f@ 400
Formula
For row n > 1, Product_{k=1..A051282(n)} A000040(T(n,k)) = A181815(n). [Product of primes indexed by nonzero terms of row n is equal to A181815(n)] - Antti Karttunen, Dec 28 2019
Comments