cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304907 Expansion of x * (d/dx) 1/(1 - Sum_{k>=1} x^k/(1 + x^k)).

Original entry on oeis.org

0, 1, 2, 9, 16, 35, 84, 161, 312, 639, 1240, 2354, 4536, 8593, 16128, 30360, 56672, 105213, 195174, 360582, 664040, 1220730, 2238324, 4095035, 7479552, 13636750, 24821108, 45114813, 81887008, 148438211, 268763160, 486082263, 878200416, 1585098372, 2858378368, 5149986275
Offset: 0

Views

Author

Ilya Gutkovskiy, May 20 2018

Keywords

Comments

Sum of all parts of all Carlitz compositions (compositions without adjacent equal parts) of n.

Crossrefs

Programs

  • Mathematica
    nmax = 35; CoefficientList[Series[x D[1/(1 - Sum[x^k/(1 + x^k), {k, 1, nmax}]), x], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[-(-1)^d, {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[n a[n], {n, 0, 35}]

Formula

a(n) = n*A003242(n).