A304912 Number of non-isomorphic spanning hyperforests of weight n.
1, 1, 2, 3, 6, 9, 18, 29, 56, 97, 186, 337, 657, 1238, 2442, 4768, 9569, 19174, 39151, 80154, 166211, 346239, 727853, 1537611, 3270710, 6989669, 15018389, 32405378, 70230238, 152772075, 333552711, 730632928, 1605459844, 3537861659, 7817447580, 17317397837
Offset: 0
Keywords
Examples
The a(6) = 18 spanning hyperforests are the following: {{1,2,3,4,5,6}} {{1},{2,3,4,5,6}} {{1,2},{3,4,5,6}} {{1,5},{2,3,4,5}} {{1,2,3},{4,5,6}} {{1,2,5},{3,4,5}} {{1},{2},{3,4,5,6}} {{1},{2,3},{4,5,6}} {{1},{2,5},{3,4,5}} {{1,2},{3,4},{5,6}} {{1,2},{3,5},{4,5}} {{1,3},{2,4},{3,4}} {{1,4},{2,4},{3,4}} {{1},{2},{3},{4,5,6}} {{1},{2},{3,4},{5,6}} {{1},{2},{3,5},{4,5}} {{1},{2},{3},{4},{5,6}} {{1},{2},{3},{4},{5},{6}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Mathematica
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; EulerT[v_List] := With[{q = etr[v[[#]]&]}, q /@ Range[Length[v]]]; ser[v_] := Sum[v[[i]] x^(i - 1), {i, 1, Length[v]}] + O[x]^Length[v]; c[n_] := Module[{v = {1}}, For[i = 1, i <= Ceiling[n/2], i++, v = Join[{1}, EulerT[Join[{0}, EulerT[v]]]]]; v]; seq[n_] := Module[{u = c[n]}, x*ser[EulerT[u]]*(1 - x*ser[u]) + (1 - x)* ser[u] + x + O[x]^n // CoefficientList[#, x]& // Rest // EulerT // Prepend[#, 1]&]; seq[36] (* Jean-François Alcover, Feb 09 2020, after Andrew Howroyd *)
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} c(n)={my(v=[1]); for(i=2, ceil(n/2), v=concat([1], EulerT(concat([0], EulerT(v))))); v} seq(n)={my(u=c(n)); concat([1], EulerT(Vec(x*Ser(EulerT(u))*(1-x*Ser(u)) + (1 - x)*(Ser(u) - 1)+ O(x*x^n))))} \\ Andrew Howroyd, Aug 29 2018
Formula
Euler transform of A304867.
Extensions
Terms a(10) and beyond from Andrew Howroyd, Aug 29 2018
Comments