A304937 Number of unlabeled nonempty hypertrees with up to n vertices and no singleton edges.
1, 0, 1, 3, 7, 16, 38, 97, 262, 758, 2298, 7258, 23648, 79056, 269628, 935327, 3290259, 11714284, 42139052, 152963036, 559697096, 2062573999, 7649550571, 28534096987, 106994891145, 403119433265, 1525466082178, 5795853930651, 22102635416715, 84579153865569
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(5) = 16 hypertrees are the following: {{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,2,3,4,5}} {{1,3},{2,3}} {{1,4},{2,3,4}} {{1,5},{2,3,4,5}} {{1,2,5},{3,4,5}} {{1,2},{2,5},{3,4,5}} {{1,3},{2,4},{3,4}} {{1,4},{2,4},{3,4}} {{1,4},{2,5},{3,4,5}} {{1,5},{2,5},{3,4,5}} {{1,3},{2,4},{3,5},{4,5}} {{1,4},{2,5},{3,5},{4,5}} {{1,5},{2,5},{3,5},{4,5}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
PARI
\\ here b(n) is A007563 as vector EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v} seq(n)={my(u=b(n)); Vec(1 + (x*Ser(EulerT(u))*(1-x*Ser(u)) - x)/(1-x))} \\ Andrew Howroyd, Aug 27 2018
Formula
a(n) = a(n-1) + A035053(n) for n > 1, a(n) = 1 - n for n < 2.