A304943 Number of ways to write n as the sum of a positive tribonacci number (A000073) and a positive odd squarefree number.
0, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 1, 3, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 3, 4, 2, 3, 3, 2, 2, 2, 2, 2, 3, 4, 2, 4, 2, 4, 3, 4, 2, 4, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 4, 1, 3, 3, 3, 3, 4, 2, 3, 4, 3, 4, 3, 2, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 3, 3
Offset: 1
Keywords
Examples
a(2) = 1 with 2 = 1 + 1, where 1 = A000073(2) = A000073(3) is a positive tribonacci number, and 1 is also odd and squarefree. a(29) = 1 since 29 = A000073(8) + 5 with 5 odd and squarefree. a(76) = 1 since 76 = A000073(6) + 3*23 with 3*23 odd and squarefree. a(1332) = 1 since 1332 = A000073(7) + 1319 with 1319 odd and squarefree. a(25249) = 1 since 25249 = A000073(4) + 25247 with 25247 odd and squarefree.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100000
- Zhi-Wei Sun, Mixed sums of primes and other terms, in: D. Chudnovsky and G. Chudnovsky (eds.), Additive Number Theory, Springer, New York, 2010, pp. 341-353.
- Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. (See also arXiv:1211.1588 [math.NT], 2012-2017.)
Crossrefs
Programs
-
Mathematica
f[0]=0;f[1]=0;f[2]=1; f[n_]:=f[n]=f[n-1]+f[n-2]+f[n-3]; QQ[n_]:=QQ[n]=Mod[n,2]==1&&SquareFreeQ[n]; tab={};Do[r=0;k=3;Label[bb];If[f[k]>=n,Goto[aa]];If[QQ[n-f[k]],r=r+1];k=k+1;Goto[bb];Label[aa];tab=Append[tab,r],{n,1,100}];Print[tab]
Comments