A304971 a(1) = 0, and for any n > 0, a(2*n) = a(n) + k(n) and a(2*n+1) = a(n) + 3 * k(n) where k(n) is the least positive integer not leading to a duplicate term in the sequence.
1, 2, 4, 3, 5, 6, 10, 7, 15, 8, 14, 11, 21, 12, 16, 9, 13, 18, 24, 17, 35, 19, 29, 20, 38, 23, 27, 22, 42, 25, 43, 26, 60, 28, 58, 30, 54, 31, 45, 32, 62, 37, 41, 33, 61, 34, 44, 36, 68, 47, 65, 39, 71, 40, 66, 46, 94, 49, 63, 50, 100, 51, 67, 48, 92, 64, 72
Offset: 1
Examples
The first terms, alongside k(n) and associate children, are: n a(n) k(n) a(2*n) a(2*n+1) -- ---- ---- ------ -------- 1 1 1 2 4 2 2 1 3 5 3 4 2 6 10 4 3 4 7 15 5 5 3 8 14 6 6 5 11 21 7 10 2 12 16 8 7 2 9 13 9 15 3 18 24 10 8 9 17 35
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, Scatterplot of (n, a(n)) for n = 1..10000000
Crossrefs
This sequence is a variant of A305410.
Programs
-
PARI
lista(nn) = my (a=[1], s=2^a[1]); for (n=1, ceil(nn/2), for (k=1, oo, if (!bittest(s, a[n]+k) && !bittest(s, a[n]+3*k), a=concat(a, [a[n]+k , a[n]+3*k]); s+=2^(a[n]+k) + 2^(a[n]+3*k); break))); a[1..nn]
Formula
a(n) = (3*a(2*n) - a(2*n+1)) / 2.
Comments