cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304973 Number of achiral color patterns (set partitions) for a row or loop of length n using exactly 3 colors (sets).

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 10, 19, 38, 65, 130, 211, 422, 665, 1330, 2059, 4118, 6305, 12610, 19171, 38342, 58025, 116050, 175099, 350198, 527345, 1054690, 1586131, 3172262, 4766585, 9533170, 14316139, 28632278, 42981185, 85962370, 129009091, 258018182, 387158345, 774316690, 1161737179, 2323474358
Offset: 0

Views

Author

Robert A. Russell, May 22 2018

Keywords

Comments

Two color patterns are equivalent if we permute the colors. Achiral color patterns must be equivalent if we reverse the order of the pattern.

Examples

			For a(5) = 5, the color patterns for both rows and loops are AABCC, ABACA, ABBBC, ABCAB, and ABCBA.
		

Crossrefs

Third column of A304972.
Third column of A140735 for odd n.
Third column of A293181 for even n.
Coefficients that determine the first formula and generating function are row 3 of A305008.

Programs

  • Mathematica
    Table[If[EvenQ[n], 2 StirlingS2[n/2+1, 3] - 2 StirlingS2[n/2, 3], StirlingS2[(n + 3)/2, 3] - StirlingS2[(n + 1)/2, 3]], {n, 0, 30}]
    Join[{0}, LinearRecurrence[{0, 5, 0, -6}, {0, 0, 1, 2}, 40]] (* Robert A. Russell, Oct 14 2018 *)

Formula

a(n) = [n==0 mod 2] * (2*S2(n/2+1, 3) - 2*S2(n/2, 3)) + [n==1 mod 2] * (S2((n+3)/2, 3) - S2((n+1)/2, 3)) where S2(n,k) is the Stirling subset number A008277(n,k).
G.f.: x^3 * (1+2x) / ((1-2x^2) * (1-3x^2)).
a(n) = A304972(n,3).
a(2m-1) = A140735(m,3).
a(2m) = A293181(m,3).