A304977 Number of unlabeled hyperforests spanning n vertices with singleton edges allowed.
1, 1, 4, 14, 55, 235, 1112, 5672, 30783, 175733, 1042812, 6385278, 40093375, 257031667, 1676581863, 11098295287, 74401300872, 504290610004, 3451219615401, 23821766422463, 165684694539918, 1160267446543182, 8175446407807625, 57928670942338011, 412561582740147643
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(3) = 14 hyperforests are the following: {{1,2,3}} {{3},{1,2}} {{3},{1,2,3}} {{1,3},{2,3}} {{1},{2},{3}} {{2},{3},{1,3}} {{2},{3},{1,2,3}} {{3},{1,2},{2,3}} {{3},{1,3},{2,3}} {{1},{2},{3},{2,3}} {{1},{2},{3},{1,2,3}} {{2},{3},{1,2},{1,3}} {{2},{3},{1,3},{2,3}} {{1},{2},{3},{1,3},{2,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
PARI
\\ here b(n) is A318494 as vector EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(2*v)))); v} seq(n)={my(u=2*b(n)); concat([1], EulerT(Vec(Ser(EulerT(u))*(1-x*Ser(u))-1)))} \\ Andrew Howroyd, Aug 27 2018
Formula
Euler transform of b(1) = 1, b(n > 1) = A134959(n).
Extensions
Terms a(7) and beyond from Andrew Howroyd, Aug 27 2018