A305052 z-density of the integer partition with Heinz number n. Clutter density of the n-th multiset multisystem (A302242).
0, -1, -1, -2, -1, -2, -1, -3, -1, -2, -1, -3, -1, -2, -2, -4, -1, -2, -1, -3, -1, -2, -1, -4, -1, -2, -1, -3, -1, -3, -1, -5, -2, -2, -2, -3, -1, -2, -1, -4, -1, -2, -1, -3, -2, -2, -1, -5, -1, -2, -2, -3, -1, -2, -2, -4, -1, -2, -1, -4, -1, -2, -1, -6, -1, -3
Offset: 1
Keywords
Examples
The 1105th multiset multisystem is {{2},{1,2},{4}} with clutter density -2, so a(1105) = -2. The 5429th multiset multisystem is {{1,2,2},{1,1,1,2}} with clutter density 0, so a(5429) = 0. The 11837th multiset multisystem is {{1,1},{1,1,1},{1,1,1,2}} with clutter density -1, so a(11837) = -1. The 42601th multiset multisystem is {{1,2},{1,3},{1,2,3}} with clutter density 1, so a(42601) = 1.
Crossrefs
Programs
-
Mathematica
zens[n_]:=If[n==1,0,Total@Cases[FactorInteger[n],{p_,k_}:>k*(PrimeNu[PrimePi[p]]-1)]-PrimeNu[LCM@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]]]]; Array[zens,100]
Comments