A305078 Heinz numbers of connected integer partitions.
2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167
Offset: 1
Keywords
Examples
The sequence of all connected multiset multisystems (see A302242, A112798) begins: 2: {{}} 3: {{1}} 5: {{2}} 7: {{1,1}} 9: {{1},{1}} 11: {{3}} 13: {{1,2}} 17: {{4}} 19: {{1,1,1}} 21: {{1},{1,1}} 23: {{2,2}} 25: {{2},{2}} 27: {{1},{1},{1}} 29: {{1,3}} 31: {{5}} 37: {{1,1,2}} 39: {{1},{1,2}} 41: {{6}} 43: {{1,4}} 47: {{2,3}} 49: {{1,1},{1,1}} 53: {{1,1,1,1}} 57: {{1},{1,1,1}} 59: {{7}} 61: {{1,2,2}} 63: {{1},{1},{1,1}} 65: {{2},{1,2}} 67: {{8}} 71: {{1,1,3}} 73: {{2,4}} 79: {{1,5}} 81: {{1},{1},{1},{1}} 83: {{9}} 87: {{1},{1,3}} 89: {{1,1,1,2}} 91: {{1,1},{1,2}} 97: {{3,3}}
Links
- Madeline Locus Dawsey, Tyler Russell and Dannie Urban, Polynomials Associated to Integer Partitions, arXiv:2108.00943 [math.NT], 2021.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; Select[Range[300],Length[zsm[primeMS[#]]]==1&]
Comments