cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A320456 Numbers whose multiset multisystem spans an initial interval of positive integers.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 21, 24, 26, 27, 28, 30, 32, 35, 36, 37, 38, 39, 42, 45, 48, 49, 52, 53, 54, 56, 57, 60, 61, 63, 64, 65, 69, 70, 72, 74, 75, 76, 78, 81, 84, 89, 90, 91, 95, 96, 98, 104, 105, 106, 108, 111, 112, 113, 114, 117
Offset: 1

Views

Author

Gus Wiseman, Oct 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The n-th multiset multisystem is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the 78th multiset multisystem is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   6: {{},{1}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  12: {{},{},{1}}
  13: {{1,2}}
  14: {{},{1,1}}
  15: {{1},{2}}
  16: {{},{},{},{}}
  18: {{},{1},{1}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  24: {{},{},{},{1}}
  26: {{},{1,2}}
  27: {{1},{1},{1}}
  28: {{},{},{1,1}}
  30: {{},{1},{2}}
  32: {{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[100],normQ[primeMS/@primeMS[#]]&]

A320458 MM-numbers of labeled simple graphs spanning an initial interval of positive integers.

Original entry on oeis.org

1, 13, 377, 611, 1363, 1937, 2021, 2117, 16211, 17719, 26273, 27521, 44603, 56173, 58609, 83291, 91031, 91039, 99499, 141401, 143663, 146653, 147533, 153023, 159659, 167243, 170839, 203087, 237679, 243893, 265369, 271049, 276877, 290029, 301129, 315433, 467711
Offset: 1

Views

Author

Gus Wiseman, Oct 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
      1: {}
     13: {{1,2}}
    377: {{1,2},{1,3}}
    611: {{1,2},{2,3}}
   1363: {{1,3},{2,3}}
   1937: {{1,2},{3,4}}
   2021: {{1,4},{2,3}}
   2117: {{1,3},{2,4}}
  16211: {{1,2},{1,3},{1,4}}
  17719: {{1,2},{1,3},{2,3}}
  26273: {{1,2},{1,4},{2,3}}
  27521: {{1,2},{1,3},{2,4}}
  44603: {{1,2},{2,3},{2,4}}
  56173: {{1,2},{1,3},{3,4}}
  58609: {{1,3},{1,4},{2,3}}
  83291: {{1,2},{1,4},{3,4}}
  91031: {{1,3},{1,4},{2,4}}
  91039: {{1,2},{2,3},{3,4}}
  99499: {{1,3},{2,3},{2,4}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[10000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(And[SquareFreeQ[#],Length[primeMS[#]]==2]&/@primeMS[#])]&]

A320532 MM-numbers of labeled hypergraphs with multiset edges and no singletons spanning an initial interval of positive integers.

Original entry on oeis.org

1, 7, 13, 19, 37, 53, 61, 89, 91, 113, 131, 133, 151, 161, 223, 247, 251, 259, 281, 299, 311, 329, 359, 371, 377, 427, 437, 463, 481, 503, 593, 611, 623, 659, 667, 689, 703, 719, 721, 791, 793, 827, 851, 863, 893, 917, 923, 953, 1007, 1057, 1069, 1073, 1157
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
    1: {}
    7: {{1,1}}
   13: {{1,2}}
   19: {{1,1,1}}
   37: {{1,1,2}}
   53: {{1,1,1,1}}
   61: {{1,2,2}}
   89: {{1,1,1,2}}
   91: {{1,1},{1,2}}
  113: {{1,2,3}}
  131: {{1,1,1,1,1}}
  133: {{1,1},{1,1,1}}
  151: {{1,1,2,2}}
  161: {{1,1},{2,2}}
  223: {{1,1,1,1,2}}
  247: {{1,2},{1,1,1}}
  251: {{1,2,2,2}}
  259: {{1,1},{1,1,2}}
  281: {{1,1,2,3}}
  299: {{1,2},{2,2}}
  311: {{1,1,1,1,1,1}}
  329: {{1,1},{2,3}}
  359: {{1,1,1,2,2}}
  371: {{1,1},{1,1,1,1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[1000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(And[PrimeOmega[#]>1]&/@primeMS[#])]&]

A320533 MM-numbers of labeled multi-hypergraphs with multiset edges and no singletons spanning an initial interval of positive integers.

Original entry on oeis.org

1, 7, 13, 19, 37, 49, 53, 61, 89, 91, 113, 131, 133, 151, 161, 169, 223, 247, 251, 259, 281, 299, 311, 329, 343, 359, 361, 371, 377, 427, 437, 463, 481, 503, 593, 611, 623, 637, 659, 667, 689, 703, 719, 721, 791, 793, 827, 851, 863, 893, 917, 923, 931, 953
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
    1: {}
    7: {{1,1}}
   13: {{1,2}}
   19: {{1,1,1}}
   37: {{1,1,2}}
   49: {{1,1},{1,1}}
   53: {{1,1,1,1}}
   61: {{1,2,2}}
   89: {{1,1,1,2}}
   91: {{1,1},{1,2}}
  113: {{1,2,3}}
  131: {{1,1,1,1,1}}
  133: {{1,1},{1,1,1}}
  151: {{1,1,2,2}}
  161: {{1,1},{2,2}}
  169: {{1,2},{1,2}}
  223: {{1,1,1,1,2}}
  247: {{1,2},{1,1,1}}
  251: {{1,2,2,2}}
  259: {{1,1},{1,1,2}}
  281: {{1,1,2,3}}
  299: {{1,2},{2,2}}
  311: {{1,1,1,1,1,1}}
  329: {{1,1},{2,3}}
  343: {{1,1},{1,1},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[1000],And[normQ[primeMS/@primeMS[#]],And@@(And[PrimeOmega[#]>1]&/@primeMS[#])]&]

A320464 MM-numbers of labeled multi-hypergraphs with no singletons spanning an initial interval of positive integers.

Original entry on oeis.org

1, 13, 113, 169, 377, 611, 1291, 1363, 1469, 1937, 2021, 2117, 2197, 3277, 4537, 4859, 4901, 5249, 5311, 7423, 7943, 8249, 8507, 10933, 12769, 16211, 16403, 16559, 16783, 16837, 17719, 19097, 20443, 20453, 24553, 25181, 25477, 26273, 26969, 27521, 28561, 28717
Offset: 1

Views

Author

Gus Wiseman, Oct 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
     1: {}
    13: {{1,2}}
   113: {{1,2,3}}
   169: {{1,2},{1,2}}
   377: {{1,2},{1,3}}
   611: {{1,2},{2,3}}
  1291: {{1,2,3,4}}
  1363: {{1,3},{2,3}}
  1469: {{1,2},{1,2,3}}
  1937: {{1,2},{3,4}}
  2021: {{1,4},{2,3}}
  2117: {{1,3},{2,4}}
  2197: {{1,2},{1,2},{1,2}}
  3277: {{1,3},{1,2,3}}
  4537: {{1,2},{1,3,4}}
  4859: {{1,4},{1,2,3}}
  4901: {{1,2},{1,2},{1,3}}
  5249: {{1,3},{1,2,4}}
  5311: {{2,3},{1,2,3}}
  7423: {{1,2},{2,3,4}}
  7943: {{1,2},{1,2},{2,3}}
  8249: {{2,4},{1,2,3}}
  8507: {{2,3},{1,2,4}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[10000],And[normQ[primeMS/@primeMS[#]],And@@(And[SquareFreeQ[#],PrimeOmega[#]>1]&/@primeMS[#])]&]
Showing 1-5 of 5 results.