A320456
Numbers whose multiset multisystem spans an initial interval of positive integers.
Original entry on oeis.org
1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 21, 24, 26, 27, 28, 30, 32, 35, 36, 37, 38, 39, 42, 45, 48, 49, 52, 53, 54, 56, 57, 60, 61, 63, 64, 65, 69, 70, 72, 74, 75, 76, 78, 81, 84, 89, 90, 91, 95, 96, 98, 104, 105, 106, 108, 111, 112, 113, 114, 117
Offset: 1
The sequence of terms together with their multiset multisystems begins:
1: {}
2: {{}}
3: {{1}}
4: {{},{}}
6: {{},{1}}
7: {{1,1}}
8: {{},{},{}}
9: {{1},{1}}
12: {{},{},{1}}
13: {{1,2}}
14: {{},{1,1}}
15: {{1},{2}}
16: {{},{},{},{}}
18: {{},{1},{1}}
19: {{1,1,1}}
21: {{1},{1,1}}
24: {{},{},{},{1}}
26: {{},{1,2}}
27: {{1},{1},{1}}
28: {{},{},{1,1}}
30: {{},{1},{2}}
32: {{},{},{},{},{}}
Cf.
A001222,
A003963,
A034691,
A034729,
A055932,
A056239,
A112798,
A255906,
A290103,
A302242,
A305052.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
Select[Range[100],normQ[primeMS/@primeMS[#]]&]
A320461
MM-numbers of labeled graphs with loops spanning an initial interval of positive integers.
Original entry on oeis.org
1, 7, 13, 91, 161, 299, 329, 377, 611, 667, 1261, 1363, 1937, 2021, 2093, 2117, 2639, 4277, 4669, 7567, 8671, 8827, 9541, 13559, 14053, 14147, 14819, 15617, 16211, 17719, 23989, 24017, 26273, 27521, 28681, 29003, 31349, 31913, 36569, 44551, 44603, 46483, 48691
Offset: 1
The sequence of terms together with their multiset multisystems begins:
1: {}
7: {{1,1}}
13: {{1,2}}
91: {{1,1},{1,2}}
161: {{1,1},{2,2}}
299: {{2,2},{1,2}}
329: {{1,1},{2,3}}
377: {{1,2},{1,3}}
611: {{1,2},{2,3}}
667: {{2,2},{1,3}}
1261: {{3,3},{1,2}}
1363: {{1,3},{2,3}}
1937: {{1,2},{3,4}}
2021: {{1,4},{2,3}}
2093: {{1,1},{2,2},{1,2}}
2117: {{1,3},{2,4}}
2639: {{1,1},{1,2},{1,3}}
4277: {{1,1},{1,2},{2,3}}
4669: {{1,1},{2,2},{1,3}}
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
Select[Range[10000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(Length[primeMS[#]]==2&/@primeMS[#])]&]
A320533
MM-numbers of labeled multi-hypergraphs with multiset edges and no singletons spanning an initial interval of positive integers.
Original entry on oeis.org
1, 7, 13, 19, 37, 49, 53, 61, 89, 91, 113, 131, 133, 151, 161, 169, 223, 247, 251, 259, 281, 299, 311, 329, 343, 359, 361, 371, 377, 427, 437, 463, 481, 503, 593, 611, 623, 637, 659, 667, 689, 703, 719, 721, 791, 793, 827, 851, 863, 893, 917, 923, 931, 953
Offset: 1
The sequence of terms together with their multiset multisystems begins:
1: {}
7: {{1,1}}
13: {{1,2}}
19: {{1,1,1}}
37: {{1,1,2}}
49: {{1,1},{1,1}}
53: {{1,1,1,1}}
61: {{1,2,2}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
113: {{1,2,3}}
131: {{1,1,1,1,1}}
133: {{1,1},{1,1,1}}
151: {{1,1,2,2}}
161: {{1,1},{2,2}}
169: {{1,2},{1,2}}
223: {{1,1,1,1,2}}
247: {{1,2},{1,1,1}}
251: {{1,2,2,2}}
259: {{1,1},{1,1,2}}
281: {{1,1,2,3}}
299: {{1,2},{2,2}}
311: {{1,1,1,1,1,1}}
329: {{1,1},{2,3}}
343: {{1,1},{1,1},{1,1}}
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
Select[Range[1000],And[normQ[primeMS/@primeMS[#]],And@@(And[PrimeOmega[#]>1]&/@primeMS[#])]&]
A320275
Numbers whose distinct prime indices are pairwise indivisible and whose own prime indices are connected and span an initial interval of positive integers.
Original entry on oeis.org
2, 3, 7, 9, 13, 19, 27, 37, 49, 53, 61, 81, 89, 91, 113, 131, 151, 169, 223, 243, 247, 251, 281, 299, 311, 343, 359, 361, 377, 427, 463, 503, 593, 611, 637, 659, 689, 703, 719, 729, 791, 827, 851, 863, 923, 953, 1069, 1073, 1159, 1163, 1183, 1291, 1321, 1339
Offset: 1
The sequence of multisystems whose MM-numbers belong to the sequence begins:
2: {{}}
3: {{1}}
7: {{1,1}}
9: {{1},{1}}
13: {{1,2}}
19: {{1,1,1}}
27: {{1},{1},{1}}
37: {{1,1,2}}
49: {{1,1},{1,1}}
53: {{1,1,1,1}}
61: {{1,2,2}}
81: {{1},{1},{1},{1}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
113: {{1,2,3}}
131: {{1,1,1,1,1}}
151: {{1,1,2,2}}
169: {{1,2},{1,2}}
Cf.
A003963,
A006126,
A055932,
A056239,
A112798,
A285572,
A286520,
A290103,
A293994,
A302242,
A316476,
A319496,
A319837,
A320456,
A320532.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[200],And[normQ[primeMS/@primeMS[#]],stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]==1]&]
A320463
MM-numbers of labeled simple hypergraphs with no singletons spanning an initial interval of positive integers.
Original entry on oeis.org
1, 13, 113, 377, 611, 1291, 1363, 1469, 1937, 2021, 2117, 3277, 4537, 4859, 5249, 5311, 7423, 8249, 8507, 16211, 16403, 16559, 16783, 16837, 17719, 20443, 20453, 24553, 25477, 26273, 26969, 27521, 34567, 37439, 39437, 41689, 42011, 42137, 42601, 43873, 43957
Offset: 1
The sequence of terms together with their multiset multisystems begins:
1: {}
13: {{1,2}}
113: {{1,2,3}}
377: {{1,2},{1,3}}
611: {{1,2},{2,3}}
1291: {{1,2,3,4}}
1363: {{1,3},{2,3}}
1469: {{1,2},{1,2,3}}
1937: {{1,2},{3,4}}
2021: {{1,4},{2,3}}
2117: {{1,3},{2,4}}
3277: {{1,3},{1,2,3}}
4537: {{1,2},{1,3,4}}
4859: {{1,4},{1,2,3}}
5249: {{1,3},{1,2,4}}
5311: {{2,3},{1,2,3}}
7423: {{1,2},{2,3,4}}
8249: {{2,4},{1,2,3}}
8507: {{2,3},{1,2,4}}
16211: {{1,2},{1,3},{1,4}}
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
Select[Range[10000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(And[SquareFreeQ[#],PrimeOmega[#]>1]&/@primeMS[#])]&]
A320464
MM-numbers of labeled multi-hypergraphs with no singletons spanning an initial interval of positive integers.
Original entry on oeis.org
1, 13, 113, 169, 377, 611, 1291, 1363, 1469, 1937, 2021, 2117, 2197, 3277, 4537, 4859, 4901, 5249, 5311, 7423, 7943, 8249, 8507, 10933, 12769, 16211, 16403, 16559, 16783, 16837, 17719, 19097, 20443, 20453, 24553, 25181, 25477, 26273, 26969, 27521, 28561, 28717
Offset: 1
The sequence of terms together with their multiset multisystems begins:
1: {}
13: {{1,2}}
113: {{1,2,3}}
169: {{1,2},{1,2}}
377: {{1,2},{1,3}}
611: {{1,2},{2,3}}
1291: {{1,2,3,4}}
1363: {{1,3},{2,3}}
1469: {{1,2},{1,2,3}}
1937: {{1,2},{3,4}}
2021: {{1,4},{2,3}}
2117: {{1,3},{2,4}}
2197: {{1,2},{1,2},{1,2}}
3277: {{1,3},{1,2,3}}
4537: {{1,2},{1,3,4}}
4859: {{1,4},{1,2,3}}
4901: {{1,2},{1,2},{1,3}}
5249: {{1,3},{1,2,4}}
5311: {{2,3},{1,2,3}}
7423: {{1,2},{2,3,4}}
7943: {{1,2},{1,2},{2,3}}
8249: {{2,4},{1,2,3}}
8507: {{2,3},{1,2,4}}
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
Select[Range[10000],And[normQ[primeMS/@primeMS[#]],And@@(And[SquareFreeQ[#],PrimeOmega[#]>1]&/@primeMS[#])]&]
A319496
Numbers whose prime indices are distinct and pairwise indivisible and whose own prime indices are connected and span an initial interval of positive integers.
Original entry on oeis.org
2, 3, 7, 13, 19, 37, 53, 61, 89, 91, 113, 131, 151, 223, 247, 251, 281, 299, 311, 359, 377, 427, 463, 503, 593, 611, 659, 689, 703, 719, 791, 827, 851, 863, 923, 953, 1069, 1073, 1159, 1163, 1291, 1321, 1339, 1363, 1511, 1619, 1703, 1733, 1739, 1757, 1769
Offset: 1
The sequence of multisystems whose MM-numbers belong to the sequence begins:
2: {{}}
3: {{1}}
7: {{1,1}}
13: {{1,2}}
19: {{1,1,1}}
37: {{1,1,2}}
53: {{1,1,1,1}}
61: {{1,2,2}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
113: {{1,2,3}}
131: {{1,1,1,1,1}}
151: {{1,1,2,2}}
223: {{1,1,1,1,2}}
247: {{1,2},{1,1,1}}
251: {{1,2,2,2}}
281: {{1,1,2,3}}
299: {{1,2},{2,2}}
Cf.
A003963,
A006126,
A055932,
A056239,
A112798,
A285573,
A286520,
A293994,
A302242,
A318401,
A319719,
A319837,
A320275,
A320456,
A320532.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[200],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]==1]&]
A320634
Odd numbers whose multiset multisystem is a multiset partition spanning an initial interval of positive integers (odd = no empty sets).
Original entry on oeis.org
1, 3, 7, 9, 13, 15, 19, 21, 27, 35, 37, 39, 45, 49, 53, 57, 61, 63, 65, 69, 75, 81, 89, 91, 95, 105, 111, 113, 117, 131, 133, 135, 141, 143, 145, 147, 151, 159, 161, 165, 169, 171, 175, 183, 185, 189, 195, 207, 223, 225, 243, 245, 247, 251, 259, 265, 267, 273
Offset: 1
The sequence of terms together with their multiset multisystems begins:
1: {}
3: {{1}}
7: {{1,1}}
9: {{1},{1}}
13: {{1,2}}
15: {{1},{2}}
19: {{1,1,1}}
21: {{1},{1,1}}
27: {{1},{1},{1}}
35: {{2},{1,1}}
37: {{1,1,2}}
39: {{1},{1,2}}
45: {{1},{1},{2}}
49: {{1,1},{1,1}}
53: {{1,1,1,1}}
57: {{1},{1,1,1}}
61: {{1,2,2}}
63: {{1},{1},{1,1}}
65: {{2},{1,2}}
69: {{1},{2,2}}
75: {{1},{2},{2}}
81: {{1},{1},{1},{1}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
95: {{2},{1,1,1}}
105: {{1},{2},{1,1}}
111: {{1},{1,1,2}}
113: {{1,2,3}}
117: {{1},{1},{1,2}}
131: {{1,1,1,1,1}}
133: {{1,1},{1,1,1}}
135: {{1},{1},{1},{2}}
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
Select[Range[1,100,2],normQ[primeMS/@primeMS[#]]&]
Showing 1-8 of 8 results.
Comments