A371294
Numbers whose binary indices are connected and pairwise indivisible, where two numbers are connected iff they have a common factor. A hybrid ranking sequence for connected antichains of multisets.
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 40, 64, 128, 160, 256, 288, 296, 416, 512, 520, 544, 552, 640, 672, 800, 808, 928, 1024, 2048, 2176, 2304, 2432, 2560, 2688, 2816, 2944, 4096, 8192, 8200, 8224, 8232, 8320, 8352, 8480, 8488, 8608, 8704, 8712, 8736, 8744, 8832, 8864, 8992
Offset: 1
The terms together with their prime indices of binary indices begin:
1: {{}}
2: {{1}}
4: {{2}}
8: {{1,1}}
16: {{3}}
32: {{1,2}}
40: {{1,1},{1,2}}
64: {{4}}
128: {{1,1,1}}
160: {{1,2},{1,1,1}}
256: {{2,2}}
288: {{1,2},{2,2}}
296: {{1,1},{1,2},{2,2}}
416: {{1,2},{1,1,1},{2,2}}
512: {{1,3}}
520: {{1,1},{1,3}}
544: {{1,2},{1,3}}
552: {{1,1},{1,2},{1,3}}
640: {{1,1,1},{1,3}}
672: {{1,2},{1,1,1},{1,3}}
800: {{1,2},{2,2},{1,3}}
808: {{1,1},{1,2},{2,2},{1,3}}
928: {{1,2},{1,1,1},{2,2},{1,3}}
For binary indices of binary indices we have
A326750, non-primitive
A326749.
For prime indices of prime indices we have
A329559, non-primitive
A305078.
For binary indices of prime indices we have
A371445, non-primitive
A325118.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Cf.
A001222,
A051026,
A285572,
A303362,
A304713,
A305079,
A316476,
A319496,
A319719,
A326704,
A371446.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],stableQ[bpe[#],Divisible]&&connectedQ[prix/@bpe[#]]&]
A320275
Numbers whose distinct prime indices are pairwise indivisible and whose own prime indices are connected and span an initial interval of positive integers.
Original entry on oeis.org
2, 3, 7, 9, 13, 19, 27, 37, 49, 53, 61, 81, 89, 91, 113, 131, 151, 169, 223, 243, 247, 251, 281, 299, 311, 343, 359, 361, 377, 427, 463, 503, 593, 611, 637, 659, 689, 703, 719, 729, 791, 827, 851, 863, 923, 953, 1069, 1073, 1159, 1163, 1183, 1291, 1321, 1339
Offset: 1
The sequence of multisystems whose MM-numbers belong to the sequence begins:
2: {{}}
3: {{1}}
7: {{1,1}}
9: {{1},{1}}
13: {{1,2}}
19: {{1,1,1}}
27: {{1},{1},{1}}
37: {{1,1,2}}
49: {{1,1},{1,1}}
53: {{1,1,1,1}}
61: {{1,2,2}}
81: {{1},{1},{1},{1}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
113: {{1,2,3}}
131: {{1,1,1,1,1}}
151: {{1,1,2,2}}
169: {{1,2},{1,2}}
Cf.
A003963,
A006126,
A055932,
A056239,
A112798,
A285572,
A286520,
A290103,
A293994,
A302242,
A316476,
A319496,
A319837,
A320456,
A320532.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[200],And[normQ[primeMS/@primeMS[#]],stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]==1]&]
A318401
Numbers whose prime indices are distinct and pairwise indivisible and whose own prime indices span an initial interval of positive integers.
Original entry on oeis.org
1, 2, 3, 7, 13, 15, 19, 35, 37, 53, 61, 69, 89, 91, 95, 113, 131, 141, 143, 145, 151, 161, 165, 223, 247, 251, 265, 281, 299, 309, 311, 329, 355, 359, 377, 385, 407, 427, 437, 463, 503, 591, 593, 611, 655, 659, 667, 671, 689, 703, 719, 721, 759, 791, 827, 851
Offset: 1
The sequence of multisystems whose MM-numbers belong to the sequence begins:
1: {}
2: {{}}
3: {{1}}
7: {{1,1}}
13: {{1,2}}
15: {{1},{2}}
19: {{1,1,1}}
35: {{2},{1,1}}
37: {{1,1,2}}
53: {{1,1,1,1}}
61: {{1,2,2}}
69: {{1},{2,2}}
89: {{1,1,1,2}}
91: {{1,1},{1,2}}
95: {{2},{1,1,1}}
Cf.
A003963,
A006126,
A055932,
A056239,
A112798,
A285572,
A290103,
A293993,
A302242,
A304713,
A316476,
A319496,
A319721,
A319837,
A320275,
A320456.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[200],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],stableQ[primeMS[#],Divisible]]&]
Showing 1-3 of 3 results.
Comments