cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A320655 Number of factorizations of n into semiprimes. Number of multiset partitions of the multiset of prime factors of n, into pairs.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

The characteristic function of nonzero terms is A065043. - R. J. Mathar, Jan 18 2021

Examples

			The a(900) = 5 factorizations into semiprimes:
  900 = (4*9*25)
  900 = (4*15*15)
  900 = (6*6*25)
  900 = (6*10*15)
  900 = (9*10*10)
The a(900) = 5 multiset partitions into pairs:
  {{1,1},{2,2},{3,3}}
  {{1,1},{2,3},{2,3}}
  {{1,2},{1,2},{3,3}}
  {{1,2},{1,3},{2,3}}
  {{2,2},{1,3},{1,3}}
		

Crossrefs

Programs

  • Mathematica
    semfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[semfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
    Table[Length[semfacs[n]],{n,100}]
  • PARI
    A320655(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((2==bigomega(d)&&(d<=m)), s += A320655(n/d, d))); (s)); \\ Antti Karttunen, Dec 06 2020

Extensions

Data section extended up to 105 terms by Antti Karttunen, Dec 06 2020

A320656 Number of factorizations of n into squarefree semiprimes. Number of multiset partitions of the multiset of prime factors of n, into strict pairs.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Examples

			The a(4620) = 6 factorizations into squarefree semiprimes:
  4620 = (6*10*77)
  4620 = (6*14*55)
  4620 = (6*22*35)
  4620 = (10*14*33)
  4620 = (10*21*22)
  4620 = (14*15*22)
The a(4620) = 6 multiset partitions into strict pairs:
  {{1,2},{1,3},{4,5}}
  {{1,2},{1,4},{3,5}}
  {{1,2},{1,5},{3,4}}
  {{1,3},{1,4},{2,5}}
  {{1,3},{2,4},{1,5}}
  {{1,4},{2,3},{1,5}}
The a(69300) = 10 factorizations into squarefree semiprimes:
  69300 = (6*6*35*55)
  69300 = (6*10*15*77)
  69300 = (6*10*21*55)
  69300 = (6*10*33*35)
  69300 = (6*14*15*55)
  69300 = (6*15*22*35)
  69300 = (10*10*21*33)
  69300 = (10*14*15*33)
  69300 = (10*15*21*22)
  69300 = (14*15*15*22)
The a(69300) = 10 multiset partitions into strict pairs:
  {{1,2},{1,2},{3,4},{3,5}}
  {{1,2},{1,3},{2,3},{4,5}}
  {{1,2},{1,3},{2,4},{3,5}}
  {{1,2},{1,3},{2,5},{3,4}}
  {{1,2},{1,4},{2,3},{3,5}}
  {{1,2},{2,3},{1,5},{3,4}}
  {{1,3},{1,3},{2,4},{2,5}}
  {{1,3},{1,4},{2,3},{2,5}}
  {{1,3},{2,3},{2,4},{1,5}}
  {{1,4},{2,3},{2,3},{1,5}}.
The a(210) = 3 factorizations into squarefree semiprimes: 210 = (6*35) = (10*21) = (14*15). - _Antti Karttunen_, Nov 02 2022
		

Crossrefs

Programs

  • Mathematica
    bepfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[bepfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Table[Length[bepfacs[n]],{n,100}]
  • PARI
    A320656(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&issquarefree(d)&&2==bigomega(d), s += A320656(n/d, d))); (s)); \\ Antti Karttunen, Nov 02 2022

Formula

a(A002110(n)) = A123023(n). - Antti Karttunen, Nov 02 2022

Extensions

Data section extended up to a(120) and the secondary offset added by Antti Karttunen, Nov 02 2022

A320456 Numbers whose multiset multisystem spans an initial interval of positive integers.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 19, 21, 24, 26, 27, 28, 30, 32, 35, 36, 37, 38, 39, 42, 45, 48, 49, 52, 53, 54, 56, 57, 60, 61, 63, 64, 65, 69, 70, 72, 74, 75, 76, 78, 81, 84, 89, 90, 91, 95, 96, 98, 104, 105, 106, 108, 111, 112, 113, 114, 117
Offset: 1

Views

Author

Gus Wiseman, Oct 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The n-th multiset multisystem is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the 78th multiset multisystem is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   6: {{},{1}}
   7: {{1,1}}
   8: {{},{},{}}
   9: {{1},{1}}
  12: {{},{},{1}}
  13: {{1,2}}
  14: {{},{1,1}}
  15: {{1},{2}}
  16: {{},{},{},{}}
  18: {{},{1},{1}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  24: {{},{},{},{1}}
  26: {{},{1,2}}
  27: {{1},{1},{1}}
  28: {{},{},{1,1}}
  30: {{},{1},{2}}
  32: {{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[100],normQ[primeMS/@primeMS[#]]&]

A320892 Numbers with an even number of prime factors (counted with multiplicity) that cannot be factored into distinct semiprimes.

Original entry on oeis.org

16, 64, 81, 96, 144, 160, 224, 256, 324, 352, 384, 400, 416, 486, 544, 576, 608, 625, 640, 729, 736, 784, 864, 896, 928, 960, 992, 1024, 1184, 1215, 1296, 1312, 1344, 1376, 1408, 1440, 1504, 1536, 1600, 1664, 1696, 1701, 1888, 1936, 1944, 1952, 2016, 2025
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2018

Keywords

Comments

A semiprime (A001358) is a product of any two not necessarily distinct primes.
If A025487(k) is in the sequence then so is every number with the same prime signature. - David A. Corneth, Oct 23 2018
Numbers for which A001222(n) is even and A322353(n) is zero. - Antti Karttunen, Dec 06 2018

Examples

			A complete list of all factorizations of 1296 into semiprimes is:
  1296 = (4*4*9*9)
  1296 = (4*6*6*9)
  1296 = (6*6*6*6)
None of these is strict, so 1296 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    strsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strsemfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
    Select[Range[1000],And[EvenQ[PrimeOmega[#]],strsemfacs[#]=={}]&]
  • PARI
    A322353(n, m=n, facs=List([])) = if(1==n, my(u=apply(bigomega,Vec(facs))); (0==length(u)||(2==vecmin(u)&&2==vecmax(u))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A322353(n/d, d-1, newfacs))); (s));
    isA300892(n) = if(bigomega(n)%2,0,(0==A322353(n))); \\ Antti Karttunen, Dec 06 2018

A320663 Number of non-isomorphic multiset partitions of weight n using singletons or pairs.

Original entry on oeis.org

1, 1, 4, 7, 21, 40, 106, 216, 534, 1139, 2715, 5962, 14012, 31420, 73484, 167617, 392714, 908600, 2140429, 5015655, 11905145, 28228533, 67590229, 162067916, 391695348, 949359190, 2316618809, 5673557284, 13979155798, 34583650498, 86034613145, 214948212879
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions:
  {{1}}  {{1,1}}    {{1},{1,1}}    {{1,1},{1,1}}
         {{1,2}}    {{1},{2,2}}    {{1,1},{2,2}}
         {{1},{1}}  {{1},{2,3}}    {{1,2},{1,2}}
         {{1},{2}}  {{2},{1,2}}    {{1,2},{2,2}}
                    {{1},{1},{1}}  {{1,2},{3,3}}
                    {{1},{2},{2}}  {{1,2},{3,4}}
                    {{1},{2},{3}}  {{1,3},{2,3}}
                                   {{1},{1},{1,1}}
                                   {{1},{1},{2,2}}
                                   {{1},{1},{2,3}}
                                   {{1},{2},{1,2}}
                                   {{1},{2},{2,2}}
                                   {{1},{2},{3,3}}
                                   {{1},{2},{3,4}}
                                   {{1},{3},{2,3}}
                                   {{2},{2},{1,2}}
                                   {{1},{1},{1},{1}}
                                   {{1},{1},{2},{2}}
                                   {{1},{2},{2},{2}}
                                   {{1},{2},{3},{3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    gs(v) = {sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i],v[j])); g*x^(2*v[i]*v[j]/g))) + sum(i=1, #v, my(r=v[i]); (1 + (1+r)%2)*x^r + ((1+r)\2)*x^(2*r))}
    a(n)={my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(gs(p) + O(x*x^n), -n))[n]); s/n!} \\ Andrew Howroyd, Oct 26 2018

Extensions

Terms a(11) and beyond from Andrew Howroyd, Oct 26 2018

A320461 MM-numbers of labeled graphs with loops spanning an initial interval of positive integers.

Original entry on oeis.org

1, 7, 13, 91, 161, 299, 329, 377, 611, 667, 1261, 1363, 1937, 2021, 2093, 2117, 2639, 4277, 4669, 7567, 8671, 8827, 9541, 13559, 14053, 14147, 14819, 15617, 16211, 17719, 23989, 24017, 26273, 27521, 28681, 29003, 31349, 31913, 36569, 44551, 44603, 46483, 48691
Offset: 1

Views

Author

Gus Wiseman, Oct 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
     1: {}
     7: {{1,1}}
    13: {{1,2}}
    91: {{1,1},{1,2}}
   161: {{1,1},{2,2}}
   299: {{2,2},{1,2}}
   329: {{1,1},{2,3}}
   377: {{1,2},{1,3}}
   611: {{1,2},{2,3}}
   667: {{2,2},{1,3}}
  1261: {{3,3},{1,2}}
  1363: {{1,3},{2,3}}
  1937: {{1,2},{3,4}}
  2021: {{1,4},{2,3}}
  2093: {{1,1},{2,2},{1,2}}
  2117: {{1,3},{2,4}}
  2639: {{1,1},{1,2},{1,3}}
  4277: {{1,1},{1,2},{2,3}}
  4669: {{1,1},{2,2},{1,3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[10000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(Length[primeMS[#]]==2&/@primeMS[#])]&]

A320458 MM-numbers of labeled simple graphs spanning an initial interval of positive integers.

Original entry on oeis.org

1, 13, 377, 611, 1363, 1937, 2021, 2117, 16211, 17719, 26273, 27521, 44603, 56173, 58609, 83291, 91031, 91039, 99499, 141401, 143663, 146653, 147533, 153023, 159659, 167243, 170839, 203087, 237679, 243893, 265369, 271049, 276877, 290029, 301129, 315433, 467711
Offset: 1

Views

Author

Gus Wiseman, Oct 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
      1: {}
     13: {{1,2}}
    377: {{1,2},{1,3}}
    611: {{1,2},{2,3}}
   1363: {{1,3},{2,3}}
   1937: {{1,2},{3,4}}
   2021: {{1,4},{2,3}}
   2117: {{1,3},{2,4}}
  16211: {{1,2},{1,3},{1,4}}
  17719: {{1,2},{1,3},{2,3}}
  26273: {{1,2},{1,4},{2,3}}
  27521: {{1,2},{1,3},{2,4}}
  44603: {{1,2},{2,3},{2,4}}
  56173: {{1,2},{1,3},{3,4}}
  58609: {{1,3},{1,4},{2,3}}
  83291: {{1,2},{1,4},{3,4}}
  91031: {{1,3},{1,4},{2,4}}
  91039: {{1,2},{2,3},{3,4}}
  99499: {{1,3},{2,3},{2,4}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[10000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(And[SquareFreeQ[#],Length[primeMS[#]]==2]&/@primeMS[#])]&]

A029862 Expansion of q^(5/24) / (eta(q) * eta(q^2)^2) in powers of q.

Original entry on oeis.org

1, 1, 4, 5, 14, 18, 41, 54, 109, 145, 267, 357, 618, 826, 1359, 1815, 2872, 3824, 5859, 7774, 11600, 15329, 22362, 29425, 42113, 55167, 77648, 101267, 140479, 182395, 249789, 322906, 437199, 562755, 754171, 966713, 1283630, 1638716, 2157763
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n where there are 3 kinds of even parts. - Ilya Gutkovskiy, Jan 17 2018
Also the number of non-isomorphic multiset partitions of weight n using singletons or pairs where no vertex appears more than twice. - Gus Wiseman, Oct 18 2018 (Proved by Andrew Howroyd, Oct 26 2018)

Examples

			G.f. = 1 + x + 4*x^2 + 5*x^3 + 14*x^4 + 18*x^5 + 41*x^6 + 54*x^7 + 109*x^8 + ...
G.f. = q^-5 + q^19 + 4*q^43 + 5*q^67 + 14*q^91 + 18*q^115 + 41*q^139 + ...
From _Gus Wiseman_, Oct 27 2018: (Start)
Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 multiset partitions using singletons or pairs where no vertex appears more than twice:
  {{1}}  {{1,1}}    {{1},{2,2}}    {{1,1},{2,2}}      {{1},{2,2},{3,3}}
         {{1,2}}    {{1},{2,3}}    {{1,2},{1,2}}      {{1},{2,3},{2,3}}
         {{1},{1}}  {{2},{1,2}}    {{1,2},{3,3}}      {{1},{2,3},{4,4}}
         {{1},{2}}  {{1},{2},{2}}  {{1,2},{3,4}}      {{1},{2,3},{4,5}}
                    {{1},{2},{3}}  {{1,3},{2,3}}      {{1},{2,4},{3,4}}
                                   {{1},{1},{2,2}}    {{2},{1,2},{3,3}}
                                   {{1},{1},{2,3}}    {{2},{1,3},{2,3}}
                                   {{1},{2},{1,2}}    {{4},{1,2},{3,4}}
                                   {{1},{2},{3,3}}    {{1},{1},{3},{2,3}}
                                   {{1},{2},{3,4}}    {{1},{2},{2},{3,3}}
                                   {{1},{3},{2,3}}    {{1},{2},{2},{3,4}}
                                   {{1},{1},{2},{2}}  {{1},{2},{3},{2,3}}
                                   {{1},{2},{3},{3}}  {{1},{2},{3},{4,4}}
                                   {{1},{2},{3},{4}}  {{1},{2},{3},{4,5}}
                                                      {{1},{2},{4},{3,4}}
                                                      {{1},{2},{2},{3},{3}}
                                                      {{1},{2},{3},{4},{4}}
                                                      {{1},{2},{3},{4},{5}}
(End)
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1 / ((1 - x^(2*k))^3 * (1 - x^(2*k-1))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
    QP = QPochhammer; s = 1/(QP[q]*QP[q^2]^2) + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / (eta(x + A) * eta(x^2 + A)^2), n))};

Formula

Euler transform of period 2 sequence [ 1, 3, ...].
G.f.: Product_{k>0} 1 / ((1 - x^(2*k))^3 * (1 - x^(2*k-1))). - Michael Somos, Mar 23 2003
a(n) ~ exp(2*Pi*sqrt(n/3))/(6*sqrt(2)*n^(3/2)). - Vaclav Kotesovec, Sep 07 2015

A320459 MM-numbers of labeled multigraphs spanning an initial interval of positive integers.

Original entry on oeis.org

1, 13, 169, 377, 611, 1363, 1937, 2021, 2117, 2197, 4901, 7943, 10933, 16211, 17719, 25181, 26273, 27521, 28561, 28717, 39527, 44603, 56173, 58609, 61393, 63713, 64061, 83291, 86903, 91031, 91039, 94987, 99499, 103259, 141401, 142129, 143663, 146653, 147533
Offset: 1

Views

Author

Gus Wiseman, Oct 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
      1: {}
     13: {{1,2}}
    169: {{1,2},{1,2}}
    377: {{1,2},{1,3}}
    611: {{1,2},{2,3}}
   1363: {{1,3},{2,3}}
   1937: {{1,2},{3,4}}
   2021: {{1,4},{2,3}}
   2117: {{1,3},{2,4}}
   2197: {{1,2},{1,2},{1,2}}
   4901: {{1,2},{1,2},{1,3}}
   7943: {{1,2},{1,2},{2,3}}
  10933: {{1,2},{1,3},{1,3}}
  16211: {{1,2},{1,3},{1,4}}
  17719: {{1,2},{1,3},{2,3}}
  25181: {{1,2},{1,2},{3,4}}
  26273: {{1,2},{1,4},{2,3}}
  27521: {{1,2},{1,3},{2,4}}
  28561: {{1,2},{1,2},{1,2},{1,2}}
  28717: {{1,2},{2,3},{2,3}}
  39527: {{1,3},{1,3},{2,3}}
  44603: {{1,2},{2,3},{2,4}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[100000],And[normQ[primeMS/@primeMS[#]],And@@(And[SquareFreeQ[#],Length[primeMS[#]]==2]&/@primeMS[#])]&]

A320533 MM-numbers of labeled multi-hypergraphs with multiset edges and no singletons spanning an initial interval of positive integers.

Original entry on oeis.org

1, 7, 13, 19, 37, 49, 53, 61, 89, 91, 113, 131, 133, 151, 161, 169, 223, 247, 251, 259, 281, 299, 311, 329, 343, 359, 361, 371, 377, 427, 437, 463, 481, 503, 593, 611, 623, 637, 659, 667, 689, 703, 719, 721, 791, 793, 827, 851, 863, 893, 917, 923, 931, 953
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
    1: {}
    7: {{1,1}}
   13: {{1,2}}
   19: {{1,1,1}}
   37: {{1,1,2}}
   49: {{1,1},{1,1}}
   53: {{1,1,1,1}}
   61: {{1,2,2}}
   89: {{1,1,1,2}}
   91: {{1,1},{1,2}}
  113: {{1,2,3}}
  131: {{1,1,1,1,1}}
  133: {{1,1},{1,1,1}}
  151: {{1,1,2,2}}
  161: {{1,1},{2,2}}
  169: {{1,2},{1,2}}
  223: {{1,1,1,1,2}}
  247: {{1,2},{1,1,1}}
  251: {{1,2,2,2}}
  259: {{1,1},{1,1,2}}
  281: {{1,1,2,3}}
  299: {{1,2},{2,2}}
  311: {{1,1,1,1,1,1}}
  329: {{1,1},{2,3}}
  343: {{1,1},{1,1},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[1000],And[normQ[primeMS/@primeMS[#]],And@@(And[PrimeOmega[#]>1]&/@primeMS[#])]&]
Showing 1-10 of 12 results. Next