A305054 If n = Product_i prime(x_i)^k_i, then a(n) = Sum_i k_i * omega(x_i), where omega = A001221 is number of distinct prime factors.
0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 2, 1, 0, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 1, 3, 2, 1, 2, 2, 1, 2, 2, 1, 3, 0, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 3, 1, 2, 3, 2, 1, 4, 1, 1, 2, 2, 2, 3
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
Table[If[n==1,0,Total@Cases[FactorInteger[n],{p_,k_}:>k*PrimeNu[PrimePi[p]]]],{n,100}]
-
PARI
a(n) = {my(f=factor(n)); sum(k=1, #f~, f[k,2]*omega(primepi(f[k,1])));} \\ Michel Marcus, Jun 09 2018
Formula
Totally additive with a(prime(n)) = omega(n).