A305081 Heinz numbers of z-trees. Heinz numbers of connected integer partitions with pairwise indivisible parts and z-density -1.
2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 91, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 203, 211, 223, 227, 229
Offset: 1
Keywords
Examples
4331 is the Heinz number of {18,20}, which is a z-tree corresponding to the multiset multisystem {{1,2,2},{1,1,3}}. 17927 is the Heinz number of {4,6,45}, which is a z-tree corresponding to the multiset multisystem {{1,1},{1,2},{2,2,3}}. 27391 is the Heinz number of {4,4,6,14}, which is a z-tree corresponding to the multiset multisystem {{1,1},{1,1},{1,2},{1,4}}.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; zens[n_]:=If[n==1,0,Total@Cases[FactorInteger[n],{p_,k_}:>k*(PrimeNu[PrimePi[p]]-1)]-PrimeNu[LCM@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]]]]; Select[Range[300],And[zens[#]==-1,Length[zsm[primeMS[#]]]==1,Select[Tuples[primeMS[#],2],UnsameQ@@#&&Divisible@@#&]=={}]&]
Comments