cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A321271 Number of connected factorizations of n into positive integers > 1 with z-density -1.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 7, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 7, 5, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2018

Keywords

Comments

These are z-trees (A303837, A305081, A305253, A321279) where we relax the requirement of pairwise indivisibility.
Given a finite multiset S of positive integers greater than 1, let G(S) be the simple labeled graph with vertices the distinct elements of S and with edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. Then S is said to be connected if G(S) is a connected graph.
The z-density of a factorization S is defined to be Sum_{s in S} (omega(s) - 1) - omega(n), where omega = A001221 and n is the product of S.

Examples

			The a(72) = 8 factorizations are (2*2*3*6), (2*2*18), (2*3*12), (2*36), (3*4*6), (3*24), (4*18), (72). Missing from this list but still connected are (2*6*6),(6*12).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[Times@@s];
    Table[Length[Select[facs[n],And[zensity[#]==-1,Length[zsm[#]]==1]&]],{n,100}]

A321272 Number of connected multiset partitions with multiset density -1, of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 5, 1, 4, 4, 7, 3, 11, 7, 8, 1, 15, 8, 22, 7, 14, 12, 30, 5, 16, 19, 20, 14, 42, 18, 56, 1, 24, 30, 28, 18, 77, 45, 38, 14
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2018

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(15) = 8 multiset partitions:
  {{1}}  {{11}}    {{12}}  {{111}}      {{112}}    {{1111}}
         {{1}{1}}          {{1}{11}}    {{1}{12}}  {{1}{111}}
                           {{1}{1}{1}}             {{11}{11}}
                                                   {{1}{1}{11}}
                                                   {{1}{1}{1}{1}}
.
  {{123}}  {{1122}}      {{1112}}      {{11111}}
           {{1}{122}}    {{1}{112}}    {{1}{1111}}
           {{2}{112}}    {{11}{12}}    {{11}{111}}
           {{1}{2}{12}}  {{1}{1}{12}}  {{1}{1}{111}}
                                       {{1}{11}{11}}
                                       {{1}{1}{1}{11}}
                                       {{1}{1}{1}{1}{1}}
.
  {{1123}}    {{111111}}            {{11112}}        {{11122}}
  {{1}{123}}  {{1}{11111}}          {{1}{1112}}      {{1}{1122}}
  {{12}{13}}  {{11}{1111}}          {{11}{112}}      {{11}{122}}
              {{111}{111}}          {{12}{111}}      {{2}{1112}}
              {{1}{1}{1111}}        {{1}{1}{112}}    {{1}{1}{122}}
              {{1}{11}{111}}        {{1}{11}{12}}    {{1}{2}{112}}
              {{11}{11}{11}}        {{1}{1}{1}{12}}  {{2}{11}{12}}
              {{1}{1}{1}{111}}                       {{1}{1}{2}{12}}
              {{1}{1}{11}{11}}
              {{1}{1}{1}{1}{11}}
              {{1}{1}{1}{1}{1}{1}}
		

Crossrefs

Formula

a(prime(n)) = A000041(n).

A321279 Number of z-trees with product A181821(n). Number of connected antichains of multisets with multiset density -1, of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 4, 2, 2, 1, 2, 3, 4, 4, 2, 4, 3, 4, 4, 3, 4, 6, 4, 6, 2, 1, 4, 6, 4, 9, 6, 5, 3, 9, 2, 8, 4, 9, 8, 7, 4, 8, 4, 12, 6, 12, 5, 16, 8, 17, 5, 7, 2, 19, 6, 10, 10, 1, 6, 13, 2, 16, 7, 16, 6, 27, 4, 7, 16, 20, 8, 15, 4, 22
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2018

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.

Examples

			The sequence of antichains begins:
   2: {{1}}
   3: {{1,1}}
   3: {{1},{1}}
   4: {{1,2}}
   5: {{1,1,1}}
   5: {{1},{1},{1}}
   6: {{1,1,2}}
   7: {{1,1,1,1}}
   7: {{1,1},{1,1}}
   7: {{1},{1},{1},{1}}
   8: {{1,2,3}}
   9: {{1,1,2,2}}
  10: {{1,1,1,2}}
  10: {{1,1},{1,2}}
  11: {{1,1,1,1,1}}
  11: {{1},{1},{1},{1},{1}}
  12: {{1,1,2,3}}
  12: {{1,2},{1,3}}
  13: {{1,1,1,1,1,1}}
  13: {{1,1,1},{1,1,1}}
  13: {{1,1},{1,1},{1,1}}
  13: {{1},{1},{1},{1},{1},{1}}
  14: {{1,1,1,1,2}}
  14: {{1,2},{1,1,1}}
  15: {{1,1,1,2,2}}
  15: {{1,1},{1,2,2}}
  16: {{1,2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    Table[Length[Select[facs[Times@@Prime/@nrmptn[n]],And[zensity[#]==-1,Length[zsm[#]]==1,Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,50}]

A305761 Nonprime Heinz numbers of z-trees.

Original entry on oeis.org

91, 203, 247, 299, 301, 377, 427, 551, 553, 559, 611, 689, 703, 707, 791, 817, 851, 923, 949, 973, 1027, 1073, 1081, 1141, 1159, 1247, 1267, 1313, 1339, 1349, 1363, 1391, 1393, 1501, 1537, 1591, 1603, 1679, 1703, 1739, 1757, 1769, 1781, 1807, 1897, 1919, 1961
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph. The z-density of a multiset S of positive integers is Sum_{s in S} (omega(s) - 1) - omega(lcm(S)). Finally, a z-tree of weight n is a connected strict integer partition of n with at least two pairwise indivisible parts and z-density -1.

Examples

			2639 is the Heinz number of {4,6,10}, a z-tree corresponding to the multiset system {{1,1},{1,2},{1,3}}.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    Select[Range[3000],With[{p=primeMS[#]},And[UnsameQ@@p,Length[p]>1,zensity[p]==-1,Length[zsm[p]]==1,Select[Tuples[p,2],UnsameQ@@#&&Divisible@@#&]=={}]]&]
Showing 1-4 of 4 results.