A321272
Number of connected multiset partitions with multiset density -1, of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
0, 1, 2, 1, 3, 2, 5, 1, 4, 4, 7, 3, 11, 7, 8, 1, 15, 8, 22, 7, 14, 12, 30, 5, 16, 19, 20, 14, 42, 18, 56, 1, 24, 30, 28, 18, 77, 45, 38, 14
Offset: 1
Non-isomorphic representatives of the a(2) = 1 through a(15) = 8 multiset partitions:
{{1}} {{11}} {{12}} {{111}} {{112}} {{1111}}
{{1}{1}} {{1}{11}} {{1}{12}} {{1}{111}}
{{1}{1}{1}} {{11}{11}}
{{1}{1}{11}}
{{1}{1}{1}{1}}
.
{{123}} {{1122}} {{1112}} {{11111}}
{{1}{122}} {{1}{112}} {{1}{1111}}
{{2}{112}} {{11}{12}} {{11}{111}}
{{1}{2}{12}} {{1}{1}{12}} {{1}{1}{111}}
{{1}{11}{11}}
{{1}{1}{1}{11}}
{{1}{1}{1}{1}{1}}
.
{{1123}} {{111111}} {{11112}} {{11122}}
{{1}{123}} {{1}{11111}} {{1}{1112}} {{1}{1122}}
{{12}{13}} {{11}{1111}} {{11}{112}} {{11}{122}}
{{111}{111}} {{12}{111}} {{2}{1112}}
{{1}{1}{1111}} {{1}{1}{112}} {{1}{1}{122}}
{{1}{11}{111}} {{1}{11}{12}} {{1}{2}{112}}
{{11}{11}{11}} {{1}{1}{1}{12}} {{2}{11}{12}}
{{1}{1}{1}{111}} {{1}{1}{2}{12}}
{{1}{1}{11}{11}}
{{1}{1}{1}{1}{11}}
{{1}{1}{1}{1}{1}{1}}
Cf.
A007718,
A181821,
A303837,
A304382,
A305081,
A305936,
A318284,
A321155,
A321229,
A321253,
A321270,
A321271.
A321279
Number of z-trees with product A181821(n). Number of connected antichains of multisets with multiset density -1, of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
0, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 4, 2, 2, 1, 2, 3, 4, 4, 2, 4, 3, 4, 4, 3, 4, 6, 4, 6, 2, 1, 4, 6, 4, 9, 6, 5, 3, 9, 2, 8, 4, 9, 8, 7, 4, 8, 4, 12, 6, 12, 5, 16, 8, 17, 5, 7, 2, 19, 6, 10, 10, 1, 6, 13, 2, 16, 7, 16, 6, 27, 4, 7, 16, 20, 8, 15, 4, 22
Offset: 1
The sequence of antichains begins:
2: {{1}}
3: {{1,1}}
3: {{1},{1}}
4: {{1,2}}
5: {{1,1,1}}
5: {{1},{1},{1}}
6: {{1,1,2}}
7: {{1,1,1,1}}
7: {{1,1},{1,1}}
7: {{1},{1},{1},{1}}
8: {{1,2,3}}
9: {{1,1,2,2}}
10: {{1,1,1,2}}
10: {{1,1},{1,2}}
11: {{1,1,1,1,1}}
11: {{1},{1},{1},{1},{1}}
12: {{1,1,2,3}}
12: {{1,2},{1,3}}
13: {{1,1,1,1,1,1}}
13: {{1,1,1},{1,1,1}}
13: {{1,1},{1,1},{1,1}}
13: {{1},{1},{1},{1},{1},{1}}
14: {{1,1,1,1,2}}
14: {{1,2},{1,1,1}}
15: {{1,1,1,2,2}}
15: {{1,1},{1,2,2}}
16: {{1,2,3,4}}
Cf.
A001055,
A007718,
A030019,
A181821,
A293607,
A303837,
A304382,
A305081,
A305936,
A318284,
A321229,
A321270,
A321271,
A321272.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
Table[Length[Select[facs[Times@@Prime/@nrmptn[n]],And[zensity[#]==-1,Length[zsm[#]]==1,Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,50}]
Showing 1-2 of 2 results.
Comments