cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305105 G.f.: Sum_{k>=1} x^(2*k-1)/(1-x^(2*k-1)) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 1, 3, 8, 17, 34, 64, 114, 195, 325, 526, 832, 1292, 1970, 2958, 4384, 6413, 9276, 13283, 18836, 26478, 36924, 51096, 70210, 95844, 130019, 175350, 235192, 313802, 416618, 550540, 724250, 948719, 1237732, 1608508, 2082600, 2686857, 3454590, 4427144, 5655652
Offset: 0

Views

Author

Vaclav Kotesovec, May 25 2018

Keywords

Comments

Convolution of A066897 and A000009.
Convolution of A067588 and A000041.
Let A(x) = Sum_{k >= 1} x^(2*k-1)/(1 - x^(2*k-1)) * Product_{k >= 1} (1 + x^k)/(1 - x^k). Then A(x) = Sum_{k >= 1} x^(2*k-1)/(1 - x^(2*k-1)) * Product_{k >= 1} (1 + x^k)/(1 + x^k - 2*x^k) == Sum_{k >= 1} x^(2*k-1)/(1 - x^(2*k-1)) (mod 2). It follows from the comment in A001227 by Juri-Stepan Gerasimov, dated Jul 17 2016, that a(n) is odd iff n is a square or twice a square. - Peter Bala, Jan 10 2025

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^(2*k-1)/(1-x^(2*k-1)), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (2*gamma + log(16*n/Pi^2)) * exp(Pi*sqrt(n)) / (16*Pi*sqrt(n)), where gamma is the Euler-Mascheroni constant A001620.