cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305122 G.f.: Sum_{k>=1} x^(2*k)/(1+x^(2*k)) * Product_{k>=1} (1+x^k)/(1-x^k).

Original entry on oeis.org

0, 0, 1, 2, 4, 8, 16, 28, 47, 78, 126, 198, 306, 464, 694, 1024, 1490, 2146, 3061, 4322, 6052, 8408, 11592, 15872, 21592, 29192, 39242, 52468, 69788, 92376, 121716, 159664, 208569, 271372, 351732, 454228, 584546, 749720, 958472, 1221560, 1552210, 1966698
Offset: 0

Views

Author

Vaclav Kotesovec, May 26 2018

Keywords

Comments

Convolution of A305121 and A000009.
The g.f. Sum_{k >= 1} x^(2*k)/(1 + x^(2*k)) * Product_{k >= 1} (1 + x ^k)/(1 - x^k) = Sum_{k >= 1} x^(2*k)/(1 + x^(2*k)) * Product_{k >= 1} (1 + x ^k)/(1 + x^k - 2*x^k) is congruent mod 2 to Sum_{k >= 1} x^(2*k)/(1 + x^(2*k)) = -G(-x^2), where G(x) is the g.f. of A112329. It follows that a(n) is odd iff n = 2*k^2 for some positive integer k. - Peter Bala, Jan 07 2025

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^(2*k)/(1+x^(2*k)), {k, 1, nmax}] * Product[(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) = A305101(n) - A305124(n).
a(n) ~ exp(sqrt(n)*Pi) * log(2) / (8*Pi*sqrt(n)).