cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305123 G.f.: Sum_{k>=1} x^(2*k-1)/(1+x^(2*k-1)) * Product_{k>=1} 1/(1-x^k).

Original entry on oeis.org

0, 1, 0, 3, 2, 7, 6, 15, 16, 32, 36, 62, 74, 117, 142, 214, 264, 377, 468, 648, 806, 1090, 1354, 1791, 2224, 2894, 3580, 4598, 5670, 7193, 8838, 11102, 13588, 16925, 20632, 25501, 30972, 38021, 46000, 56135, 67668, 82119, 98642, 119115, 142592, 171412, 204520
Offset: 0

Views

Author

Vaclav Kotesovec, May 26 2018

Keywords

Comments

Conjecture: a(n) is odd iff n is a term of A067567. - Peter Bala, Jan 10 2025

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(2*k-1)/(1+x^(2*k-1)), {k, 1, nmax}] * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

For n > 0, a(n) = A209423(n) - A305121(n).
a(n) ~ log(2) * exp(Pi*sqrt(2*n/3)) / (2^(5/2)*Pi*sqrt(n)).