A305131 Numbers k with the property that there exists a positive integer multiplier M such that M times the sum of the digits of k, multiplied further by the reversal of this product, gives k.
1, 10, 40, 81, 100, 400, 640, 736, 810, 1000, 1300, 1458, 1729, 1944, 2268, 2430, 3640, 4000, 6400, 7360, 7744, 8100, 10000, 12070, 12100, 13000, 14580, 16120, 17290, 19440, 22680, 23632, 24300, 27010, 30250, 31003, 36400, 38152, 40000, 42282, 51142, 63504
Offset: 1
Examples
For k = 1729 the sum of the digits is 19 and M = 1: 19 * 91 = 1729. For k = 122512 the sum of the digits is 13 and M = 31: 13 * 31 = 403 and 403 * 304 = 122512.
Links
- Viorel Nitica, About some relatives of the taxicab numbers, arXiv:1805.10739 [math.NT], 2018; J. of Int. Seq., 21 (2018), Article 18.9.4. [Where these numbers are introduced.]
- Viorel Nitica, Andrei Török, About Some Relatives of Palindromes, arXiv:1908.00713 [math.NT], 2019.
- Viorel Niţică, Jeroz Makhania, About the Orbit Structure of Sequences of Maps of Integers, Symmetry (2019), Vol. 11, No. 11, 1374.
Programs
-
PARI
select( is(n,s=sumdigits(n))=n&&!frac(n/=s)&&fordiv(n,M,fromdigits(Vecrev(digits(s*M)))*M==n&&return(1)), [0..10^5]) \\ M. F. Hasler, May 27 2018
Comments