cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Viorel Nitica

Viorel Nitica's wiki page.

Viorel Nitica has authored 4 sequences.

A306830 Integers k for which there exists a nonnegative integer j such that (s(k) + j) * reversal(s(k) + j) = k where s(k) is the sum of digits of k.

Original entry on oeis.org

1, 10, 40, 81, 90, 100, 121, 160, 250, 252, 360, 400, 403, 484, 490, 574, 640, 736, 765, 810, 900, 976, 1000, 1008, 1089, 1207, 1210, 1300, 1458, 1462, 1600, 1612, 1729, 1855, 1936, 1944, 2268, 2296, 2430, 2500, 2520, 2668, 2701, 2944, 3025, 3154, 3478, 3600, 3627, 3640, 4000, 4030, 4032, 4275
Offset: 1

Author

Viorel Nitica, Mar 12 2019

Keywords

Comments

Subsequence of A305231. This sequence excludes for example 4 = (s(4) + (-2)) * (s(4) + (-2)) from that sequence. - David A. Corneth, Apr 15 2019

Examples

			The sum of the digits of 90 is 9 and (9+21)*reversal(9+21) = 30*3 = 90, so 90 is in the sequence.
The sum of the digits of 2268 is 18 and (18 + 18)*reversal(18 + 18) = 36*63 = 2268, so 2268 is in the sequence.
		

Crossrefs

Cf. A004086 (reversal), A007953 (sum of digits), A027750 (divisors), A305231.

Programs

  • Mathematica
    okQ[k_] := Module[{s, j}, s = Total[IntegerDigits[k]]; For[j = 0, jJean-François Alcover, Mar 17 2019 *)
  • PARI
    isok(k) = {my(s = sumdigits(k)); fordiv(k, d, if ((d>=s) && (k/d == fromdigits(Vecrev(digits(d)))), return (1));); return (0);} \\ Michel Marcus, Mar 13 2019
    
  • PARI
    upto(n) = {my(res = List([1, 10, 40, 81, 90]), m = 0); for(i = 10, 10*sqrtint(n), revi = fromdigits(Vecrev(digits(i))); if(revi <= i && i * revi <= n, m = i; listput(res, i * revi); ) ); q = #res; for(i = 1, #q, for(j = 1, logint(n \ res[i], 10), listput(res, res[i]*10^j); ) ); listsort(res, 1); res } \\ David A. Corneth, Apr 15 2019

Extensions

Name clarified by David A. Corneth, Apr 15 2019

A323190 Integers k for which there exists an integer j such that s(k) + j + reversal(s(k) + j) = k where s(k) is the sum of digits of k.

Original entry on oeis.org

0, 10, 11, 12, 14, 16, 18, 22, 33, 44, 55, 66, 77, 88, 99, 101, 110, 121, 132, 141, 143, 154, 161, 165, 176, 181, 187, 198, 201, 202, 221, 222, 241, 242, 261, 262, 281, 282, 302, 303, 322, 323, 342, 343, 362, 363, 382, 383, 403, 404, 423, 424, 443, 444, 463
Offset: 1

Author

Viorel Nitica, Jan 06 2019

Keywords

Comments

Theorem: all palindromes that have an even number of digits and all palindromes that have an odd number of digits and the digit in the middle is even are in this sequence.

Examples

			k=10 is a term because a solution exists with j=4: s(10)=1, s(k) + j + reversal(s(k) + j) = 1 + 4 + reversal(1 + 4) = 10.
		

Crossrefs

Cf. A007953 (sum of digits), A004086 (reversal).
A305130 is a subsequence.
This sequence is a subsequence of A067030.

Programs

  • Java
    package com.company;
    public class Main {
    public static void main(String args[]) {
    int counter=1;
    for (int i = 0; i < 10000; i++) {
    for (int j = 0; j < 10000; j++) {
    int sumPlus = sumDigits(i) + j;
    int check = sumPlus + reverse(sumPlus);
    if (check == i) {
    System.out.println(String.format("n(%d)=%d,a=%d", counter,i, j));
    counter++;
    break;
    }
    }
    }
    System.out.println(String.format("%d", counter));
    }
    public static int reverse(int x) {
    String s = String.valueOf(x);
    StringBuilder sb = new StringBuilder();
    sb.append(s);
    sb.reverse();
    return Integer.parseInt(sb.toString());
    }
    public static int sumDigits(int x) {
    int result = 0;
    while (x > 0) {
    result += x % 10;
    x = x / 10;
    }
    return result;
    }
    }
  • Mathematica
    ok[n_] := Block[{s = Total@ IntegerDigits@ n}, Select[Range[0, n], s + # + FromDigits@ Reverse@ IntegerDigits[s + #] == n &, 1] != {}]; Select[ Range[0, 1000], ok] (* Giovanni Resta, Feb 19 2019 *)

Extensions

a(30)-a(55) from Giovanni Resta, Feb 19 2019

A305130 Numbers k with the property that there exists a positive integer M, called multiplier, such that the sum of the digits of k times the multiplier added to the reversal of this product gives k.

Original entry on oeis.org

10, 11, 12, 18, 22, 33, 44, 55, 66, 77, 88, 99, 101, 110, 121, 132, 141, 165, 181, 201, 202, 221, 222, 261, 262, 282, 302, 303, 322, 323, 342, 343, 363, 403, 404, 423, 424, 444, 463, 483, 504, 505, 525, 545, 564, 584, 585, 605, 606, 645, 646, 666, 686, 706
Offset: 1

Author

Viorel Nitica, May 26 2018

Keywords

Comments

These numbers are related to the taxicab number 1729. This is why they might be called "additive Hardy-Ramanujan numbers".

Examples

			For k = 11 the sum of the digits is 2 and the multiplier is 5: 2 * 5 = 10 and 10 + 01 = 11.
For k = 747 the sum of the digits is 18 and the multiplier is 7: 18 * 7 = 126 and 126 + 621 = 747.
		

Crossrefs

Subsequence of A067030.

Programs

  • Mathematica
    Block[{k, d, j}, Reap[Do[k = 1; d = Total@ IntegerDigits[i]; While[Nor[k > i, Set[j, # + IntegerReverse@ #] == i &[d k]], k++]; If[j == i, Sow[{i, k}]], {i, 720}]][[-1, 1, All, 1]] ] (* Michael De Vlieger, Jan 28 2020 *)

A305131 Numbers k with the property that there exists a positive integer multiplier M such that M times the sum of the digits of k, multiplied further by the reversal of this product, gives k.

Original entry on oeis.org

1, 10, 40, 81, 100, 400, 640, 736, 810, 1000, 1300, 1458, 1729, 1944, 2268, 2430, 3640, 4000, 6400, 7360, 7744, 8100, 10000, 12070, 12100, 13000, 14580, 16120, 17290, 19440, 22680, 23632, 24300, 27010, 30250, 31003, 36400, 38152, 40000, 42282, 51142, 63504
Offset: 1

Author

Viorel Nitica, May 26 2018

Keywords

Comments

These numbers are related to the taxicab number 1729, which has multiplier 1. This is why they might be called "multiplicative Hardy-Ramanujan numbers".
If a(n) is in the sequence, then 10 * a(n) is also in the sequence, with the multiplier 10 times larger. We could call primitive the terms not of this form. Primitive terms which end in 0 are 40, 640, 1300, 2430, 3640, 12070, 12100, 16120, 27010, ... - M. F. Hasler, May 27 2018

Examples

			For k = 1729 the sum of the digits is 19 and M = 1: 19 * 91 = 1729.
For k = 122512 the sum of the digits is 13 and M = 31: 13 * 31 = 403 and 403 * 304 = 122512.
		

Crossrefs

Subsequence of A005349 (Niven numbers).

Programs

  • PARI
    select( is(n,s=sumdigits(n))=n&&!frac(n/=s)&&fordiv(n,M,fromdigits(Vecrev(digits(s*M)))*M==n&&return(1)), [0..10^5]) \\ M. F. Hasler, May 27 2018