A306830 Integers k for which there exists a nonnegative integer j such that (s(k) + j) * reversal(s(k) + j) = k where s(k) is the sum of digits of k.
1, 10, 40, 81, 90, 100, 121, 160, 250, 252, 360, 400, 403, 484, 490, 574, 640, 736, 765, 810, 900, 976, 1000, 1008, 1089, 1207, 1210, 1300, 1458, 1462, 1600, 1612, 1729, 1855, 1936, 1944, 2268, 2296, 2430, 2500, 2520, 2668, 2701, 2944, 3025, 3154, 3478, 3600, 3627, 3640, 4000, 4030, 4032, 4275
Offset: 1
Examples
The sum of the digits of 90 is 9 and (9+21)*reversal(9+21) = 30*3 = 90, so 90 is in the sequence. The sum of the digits of 2268 is 18 and (18 + 18)*reversal(18 + 18) = 36*63 = 2268, so 2268 is in the sequence.
Links
- David A. Corneth, Table of n, a(n) for n = 1..17624
- Viorel Nitica, Andrei Török, About Some Relatives of Palindromes, arXiv:1908.00713 [math.NT], 2019.
- Viorel Niţică, Jeroz Makhania, About the Orbit Structure of Sequences of Maps of Integers, Symmetry (2019), Vol. 11, No. 11, 1374.
Programs
-
Mathematica
okQ[k_] := Module[{s, j}, s = Total[IntegerDigits[k]]; For[j = 0, j
Jean-François Alcover, Mar 17 2019 *) -
PARI
isok(k) = {my(s = sumdigits(k)); fordiv(k, d, if ((d>=s) && (k/d == fromdigits(Vecrev(digits(d)))), return (1));); return (0);} \\ Michel Marcus, Mar 13 2019
-
PARI
upto(n) = {my(res = List([1, 10, 40, 81, 90]), m = 0); for(i = 10, 10*sqrtint(n), revi = fromdigits(Vecrev(digits(i))); if(revi <= i && i * revi <= n, m = i; listput(res, i * revi); ) ); q = #res; for(i = 1, #q, for(j = 1, logint(n \ res[i], 10), listput(res, res[i]*10^j); ) ); listsort(res, 1); res } \\ David A. Corneth, Apr 15 2019
Extensions
Name clarified by David A. Corneth, Apr 15 2019
Comments