A305149 Number of factorizations of n whose distinct factors are pairwise indivisible and greater than 1.
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 5, 1, 2, 2, 2, 2, 6, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 8, 1, 2, 3, 4, 2, 5, 1, 3, 2, 5, 1, 6, 1, 2, 3, 3, 2, 5, 1, 5, 3, 2, 1, 8, 2, 2, 2, 4, 1, 8, 2, 3, 2, 2, 2, 6, 1, 3, 3, 6, 1, 5, 1, 4, 5
Offset: 1
Keywords
Examples
The a(60) = 8 factorizations are (2*2*3*5), (2*2*15), (3*4*5), (3*20), (4*15), (5*12), (6*10), (60). Missing from this list are (2*3*10), (2*5*6), (2*30).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n],Select[Tuples[Union[#],2],UnsameQ@@#&&Divisible@@#&]=={}&]],{n,100}]
-
PARI
pairwise_indivisible(v) = { for(i=1,#v,for(j=i+1,#v,if(!(v[j]%v[i]),return(0)))); (1); }; A305149(n, m=n, facs=List([])) = if(1==n, pairwise_indivisible(Set(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A305149(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Oct 08 2018
Extensions
More terms from Antti Karttunen, Oct 08 2018