A305161 Number A(n,k) of compositions of n into exactly n nonnegative parts <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 3, 7, 1, 0, 1, 1, 3, 10, 19, 1, 0, 1, 1, 3, 10, 31, 51, 1, 0, 1, 1, 3, 10, 35, 101, 141, 1, 0, 1, 1, 3, 10, 35, 121, 336, 393, 1, 0, 1, 1, 3, 10, 35, 126, 426, 1128, 1107, 1, 0, 1, 1, 3, 10, 35, 126, 456, 1520, 3823, 3139, 1, 0
Offset: 0
Examples
A(3,1) = 1: 111. A(3,2) = 7: 012, 021, 102, 111, 120, 201, 210. A(3,3) = 10: 003, 012, 021, 030, 102, 111, 120, 201, 210, 300. A(4,2) = 19: 0022, 0112, 0121, 0202, 0211, 0220, 1012, 1021, 1102, 1111, 1120, 1201, 1210, 2002, 2011, 2020, 2101, 2110, 2200. A(4,3) = 31: 0013, 0022, 0031, 0103, 0112, 0121, 0130, 0202, 0211, 0220, 0301, 0310, 1003, 1012, 1021, 1030, 1102, 1111, 1120, 1201, 1210, 1300, 2002, 2011, 2020, 2101, 2110, 2200, 3001, 3010, 3100. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 3, 3, 3, 3, 3, 3, 3, ... 0, 1, 7, 10, 10, 10, 10, 10, 10, ... 0, 1, 19, 31, 35, 35, 35, 35, 35, ... 0, 1, 51, 101, 121, 126, 126, 126, 126, ... 0, 1, 141, 336, 426, 456, 462, 462, 462, ... 0, 1, 393, 1128, 1520, 1667, 1709, 1716, 1716, ... 0, 1, 1107, 3823, 5475, 6147, 6371, 6427, 6435, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..200
Crossrefs
Programs
-
Maple
A:= (n, k)-> coeff(series(((x^(k+1)-1)/(x-1))^n, x, n+1), x, n): seq(seq(A(n, d-n), n=0..d), d=0..12); # second Maple program: b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i=0, 0, add(b(n-j, i-1, k), j=0..min(n, k)))) end: A:= (n, k)-> b(n$2, k): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, 0, Sum[b[n - j, i - 1, k], {j, 0, Min[n, k]}]]]; A[n_, k_] := b[n, n, k]; Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 05 2019, after Alois P. Heinz *)
Formula
A(n,k) = [x^n] ((x^(k+1)-1)/(x-1))^n.
A(n,k) - A(n,k-1) = A180281(n,k) for n,k > 0.
A(n,k) = A(n,n) for all k >= n.