cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305188 Numbers that are equal to a nontrivial multinomial coefficient (i.e., equal to k!/(k1!*...*km!) with k1 + ... + km = k, k-2 >= k1 >= ... >= km).

Original entry on oeis.org

6, 10, 12, 15, 20, 21, 24, 28, 30, 35, 36, 42, 45, 55, 56, 60, 66, 70, 72, 78, 84, 90, 91, 105, 110, 120, 126, 132, 136, 140, 153, 156, 165, 168, 171, 180, 182, 190, 210, 220, 231, 240, 252, 253, 272, 276, 280, 286, 300, 306, 325, 330, 336, 342, 351, 360, 364
Offset: 1

Views

Author

Vincent Champain, May 27 2018

Keywords

Comments

This sequence answers the following question: what numbers correspond to the number of permutations of a number of items that is lower than the number of permutations itself? It means that the underlying structure has some form of redundance / symmetry.
It can be shown that:
- no prime number is part of this sequence (see A304938)
- some nonprimes are not part of the sequence (beginning with 1, 4, 8, 9, 14, 16, 18, ...)
- any number that is a factorial of another integer e is part of this sequence (k=e, k1=ki=...=ke=1).
This sequence is a generalization of A006987.
From David A. Corneth, May 28 2018: (Start)
Also the numbers that are the number of permutations of either:
- sets of balls with two distinct colors of balls where each color occurs at least twice;
- sets of balls with at least three distinct colors of balls.
(End)
From Amiram Eldar, Jul 23 2020: (Start)
The asymptotic density of this sequence is 0 (Niven, 1951).
The number of terms not exceeding x is (1 + sqrt(2)) * x^(1/2) + o(x^(1/2)) (Erdős, 1954). (End)

Examples

			a(1) = 6 because all numbers lower than 6 are either prime or a power of primes.
105 is a term of the sequence because 105 is equal to a multinomial coefficient: 105 = (4+2+1)! / (4! * 2! * 1!) and 105 is the number of ways 7 balls can be sorted where 4 are red, 2 are yellow and one is blue.
2016 is a term because 64! / (62! * 2!) = 2016. - _David A. Corneth_, May 29 2018
		

Crossrefs

Programs

  • Mathematica
    mult[w_] := Total[w]!/Times @@ (w!); L = {}; Do[ t = mult /@ Select[ IntegerPartitions@ n, #[[1]] < n-1 &]; L = Union[L, Select[t, # <= 400 &]], {n, 3, 30}]; L (* Terms < 400, Giovanni Resta, May 27 2018 *)
  • Python
    # see link above

Extensions

a(28)-a(57) from Giovanni Resta, May 27 2018