cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A304382 Number of z-trees summing to n. Number of connected strict integer partitions of n with pairwise indivisible parts and clutter density -1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 3, 2, 4, 3, 5, 2, 5, 4, 6, 3, 7, 6, 8, 4, 9, 8, 13, 9, 15, 8, 14, 12, 16, 12, 20, 20, 24, 15, 27, 20, 33, 27, 35
Offset: 1

Views

Author

Gus Wiseman, May 21 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.
The clutter density of a multiset S of positive integers is Sum_{s in S} (omega(s) - 1) - omega(LCM(S)).

Examples

			The a(30) = 8 z-trees together with the corresponding multiset systems are the following.
       (30): {{1,2,3}}
     (26,4): {{1,6},{1,1}}
     (22,8): {{1,5},{1,1,1}}
     (21,9): {{2,4},{2,2}}
    (16,14): {{1,1,1,1},{1,4}}
   (15,9,6): {{2,3},{2,2},{1,2}}
  (14,10,6): {{1,4},{1,3},{1,2}}
  (12,10,8): {{1,1,2},{1,3},{1,1,1}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    zreeQ[s_]:=And[Length[s]>=2,zensity[s]==-1];
    strConnAnti[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&&Length[zsm[#]]==1&&Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}&];
    Table[Length[Select[strConnAnti[n],Length[#]==1||zreeQ[#]&]],{n,20}]

A305195 Number of z-blobs summing to n. Number of connected strict integer partitions of n, with pairwise indivisible parts, that cannot be capped by a z-tree.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 2, 2, 2, 1, 1, 3, 3, 3, 1, 1, 1, 4, 5, 6, 2, 1, 1, 4, 6, 7, 2, 2, 6
Offset: 1

Views

Author

Gus Wiseman, May 27 2018

Keywords

Comments

Caps of a clutter are defined in the link, and the generalization to "multiclutters," where edges can be multisets, is straightforward.

Examples

			The a(30) = 2 z-blobs together with the corresponding multiset systems:
     (30): {{1,2,3}}
  (18,12): {{1,2,2},{1,1,2}}
The a(47) = 3 z-blobs together with the corresponding multiset systems:
        (47): {{15}}
  (21,14,12): {{2,4},{1,4},{1,1,2}}
  (20,15,12): {{1,1,3},{2,3},{1,1,2}}
The a(60) = 5 z-blobs together with the corresponding multiset systems:
           (60): {{1,1,2,3}}
        (42,18): {{1,2,4},{1,2,2}}
        (36,24): {{1,1,2,2},{1,1,1,2}}
     (30,18,12): {{1,2,3},{1,2,2},{1,1,2}}
  (21,15,14,10): {{2,4},{2,3},{1,4},{1,3}}
The a(67) = 7 z-blobs together with the corresponding multiset systems:
           (67): {{19}}
     (45,12,10): {{2,2,3},{1,1,2},{1,3}}
     (42,15,10): {{1,2,4},{2,3},{1,3}}
     (40,15,12): {{1,1,1,3},{2,3},{1,1,2}}
     (33,22,12): {{2,5},{1,5},{1,1,2}}
     (28,21,18): {{1,1,4},{2,4},{1,2,2}}
  (24,18,15,10): {{1,1,1,2},{1,2,2},{2,3},{1,3}}
		

Crossrefs

Showing 1-2 of 2 results.