A304382
Number of z-trees summing to n. Number of connected strict integer partitions of n with pairwise indivisible parts and clutter density -1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 3, 2, 4, 3, 5, 2, 5, 4, 6, 3, 7, 6, 8, 4, 9, 8, 13, 9, 15, 8, 14, 12, 16, 12, 20, 20, 24, 15, 27, 20, 33, 27, 35
Offset: 1
The a(30) = 8 z-trees together with the corresponding multiset systems are the following.
(30): {{1,2,3}}
(26,4): {{1,6},{1,1}}
(22,8): {{1,5},{1,1,1}}
(21,9): {{2,4},{2,2}}
(16,14): {{1,1,1,1},{1,4}}
(15,9,6): {{2,3},{2,2},{1,2}}
(14,10,6): {{1,4},{1,3},{1,2}}
(12,10,8): {{1,1,2},{1,3},{1,1,1}}
Cf.
A000009,
A006126,
A048143,
A054921,
A112798,
A285572,
A286518,
A286520,
A293993,
A303362,
A303837,
A304714,
A304716,
A305194,
A305195.
-
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
zreeQ[s_]:=And[Length[s]>=2,zensity[s]==-1];
strConnAnti[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&&Length[zsm[#]]==1&&Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}&];
Table[Length[Select[strConnAnti[n],Length[#]==1||zreeQ[#]&]],{n,20}]
A305194
Number of z-forests summing to n. Number of strict integer partitions of n with pairwise indivisible parts and all connected components having clutter density -1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 5, 4, 6, 7, 7, 9, 11, 12, 13, 15, 17, 20, 23, 25, 27, 32, 35, 40, 45, 49, 54, 58, 67, 78, 82, 95, 99, 111, 123, 135, 150, 164, 177, 194, 214, 236, 260, 282, 309, 330
Offset: 1
The a(17) = 11 z-forests together with the corresponding multiset systems:
(17): {{7}}
(15,2): {{2,3},{1}}
(14,3): {{1,4},{2}}
(13,4): {{6},{1,1}}
(12,5): {{1,1,2},{3}}
(11,6): {{5},{1,2}}
(10,7): {{1,3},{4}}
(9,8): {{2,2},{1,1,1}}
(10,4,3): {{1,3},{1,1},{2}}
(7,6,4): {{4},{1,2},{1,1}}
(7,5,3,2): {{4},{3},{2},{1}}
Cf.
A030019,
A048143,
A134954,
A275307,
A285572,
A293510,
A293993,
A293994,
A303362,
A303837,
A303838,
A304118,
A304382,
A305078,
A305195.
-
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
zreeQ[s_]:=And[Length[s]>=2,zensity[s]==-1];
Table[Length[Select[IntegerPartitions[n],Function[s,UnsameQ@@s&&And@@(Length[#]==1||zreeQ[#]&)/@Table[Select[s,Divisible[m,#]&],{m,zsm[s]}]&&Select[Tuples[s,2],UnsameQ@@#&&Divisible@@#&]=={}]]],{n,50}]
Showing 1-2 of 2 results.
Comments